24/02/14 10:47:27.09 Svi5gd6l.net
>>307
>>コインの裏表(裏が0、表が1)で項を決めるとする
>>その場合
>>(中略)
>>となり、その総和は可算無限である
>その個数は、等比数列になってるでしょ?
>つまり、2倍ずつ
なってるね
>等比数列の和の公式を見てね
>公比 r=2なら、無限和は2^Nじゃないの?
ああ、素人が必ず落ちる落とし穴に見事にはまってますね
結論からいうと「違いますよ」
>だったらその総和は非可算無限でしょ!
「だったら」でないのでそれは言えません
結論は1+Σ2^nなので、可算無限です
自然数全体の個数は非可算無限ですか? 違うでしょ
だったら、有限小数と一対一対応できるコイン任意有限列の全体も非可算無限ではなく可算無限です
それとももしかして、自然数の全体も非可算無限、とか爆弾発言しますか?
その場合N=2^Nとなって、カントールのパラドックスで矛盾しますけどね