24/02/13 06:35:19.11 12BgzyOF.net
>>281
>>>(同値類の集合が)可算無限か非可算無限かは、些末なことですので、いま保留とします
>>重大なことですがね
>重大なことなら、お分かりだろう
ええ あなたが分かってないことも
>”決定番号の集合をKとすると、自然数Nと同様に可算無限集合であり、N=Kである!”
文末に”!”って、何を力みかえってるのかな?
>箱にサイコロの目 1~6を入れると、C(s)全体の濃度は6^Nで 非可算濃度(∵2^N が非可算濃度)
もしかして、任意有限長小数全体の集合は非可算濃度だと思ってる?
違うよ、可算濃度だよ
サイコロとかいってるから6進で考えるね
任意有限長小数の全体は∪(n∈N)6^nで、これは可算濃度だよ
無限小数の全体が6^Nで、これが非可算濃度
サイコロ数列の場合
各尻尾同値類は、任意有限長小数全体と一対一対応するから可算濃度
無限列全体は、無限小数とほぼ(※)一対一対応するから非可算濃度
(※ 例えば0.055…と0.100…を等しいとしないなら、完全に一対一対応)
>さらに、そもそも 箱には任意実数を入れて良いとされていた
>箱3個 s=(s1,s2.s3) として、ミニしっぽ同値類の集合C(s)を考えると
>代表は r=(r1,r2.r3) として、r3=s3の条件でしっぽ同値関係を満たす
>(r1,r2)で、r1,r2は任意の実数だから、2次元ユークリッド空間と一対一対応ができる
>よって、ミニしっぽ同値類の集合C(s)の濃度は非可算です
それ、ダメな
R^nでも非可算、で、誤魔化してるだけだから
>よって、箱を可算無限個にした場合のフルサイズの集合C(s)の濃度は、非可算以上です
あ、それも、誤りな
濃度に関しては 2^N=R^N だから
R^Xで、Xが非可算じゃないと、更に高い濃度にできないから
これ、豆な