24/02/12 18:14:08.27 7PLohM0M.net
>>230
>>nは、無限集合の自然数N全体を渡るので、N全体に測度1を与えると、各nの測度は0
>はい 測度の定義を知らない素人が初歩で必ずやらかす誤りを犯しましたね
>測度は可算加法性を有するって知らなかったでしょ
>各nの測度が0なら、それの可算和も0 つまり全体が0 矛盾ですね
>だからいったでしょ 各nは非可測だって
>0にはできないから
用語”非可測”を、盛大に誤解・曲解している 勉強不足の落ちこぼれさん が、自分の無知を自慢するかね?w
・ここは、中高一貫の高校生もいるかもしれないので
下記に ”非可測”の文献を再度引用しておきます
(私のお薦めは、藤田博司先生です)
・さて、”裾が重い分布”の話を、旧ガロアすれの議論でもしたのだが、忘れたのでしょうね
”裾が重い分布”は、裾の減衰が遅い分布です。連続変数では 1/x^n で指数 n=1 では積分 ∫x=1~∞ 1/x dx は、∞に発散します
指数 nが1より十分大きければ、十分早く減衰しますので、積分はある値に収束します
・nが1より小さくて、n=0が一様分布です。これは、当然発散しますので、一様分布は有限区間[a,b]に限定して使います
∫x=a~b 1/x^0 dx = b-a です
・上記は、連続変数の場合ですが、自然数で決定番号のような場合は、離散変数です
積分は、和Σに置き換えられます。同じように、裾の減衰がないと、変数の範囲が無限大に及ぶ場合は、和Σは発散します
同様に、離散変数の一様分布も有限区間[a,b]に限定して使います
・その話に、”各nは非可測”とか ド素人ですね ;p)
(参考)
URLリンク(ja.wikipedia.org)
裾の重い分布
裾の重い分布あるいはヘヴィーテイルとは、確率分布の裾がガウス分布のように指数関数的には減衰せず[1]、それよりも緩やかに減衰する分布の総称。 また類似の用語に、ファットテイル、裾の厚い分布、ロングテール、劣指数的(sub