スレタイ 箱入り無数目を語る部屋15at MATH
スレタイ 箱入り無数目を語る部屋15 - 暇つぶし2ch244:132人目の素数さん
24/02/12 17:03:59.65 7PLohM0M.net
つづき
「ε-N論法,ε-δ論法」は大学一年生が微積分で最初に苦労するところと言われることが多い.その理由がはっきりわかるわけではないが,いくつか思うところはあるので,気休めのために小文を書いてみる.まずε-δ“論法”と呼ぶのはあまり良くないと思う1.
これは単に極限の現代的な定義に過ぎないのに,こう呼ぶと極限には何らかの別の定義があって,新しい議論の方法を提供しているという誤解を生みかねない.
定義というのはそれに従って議論しなければならない規則のようなものなので,議論の方法はむしろ狭められている.
ただし狭めたお陰で,それに従う限り共通の基盤で議論できるようになり,数学ではそちらを重視するのである.
さて,定義だということを了解すると,どうして高校の数学から極限の定義が変わったのかと思うのは自然なことである.
これは「高校での曖昧な定義を厳密にする」というそれ自体曖昧な説明で済まされることが多いが2,
新しい定義が機能的に優れているという面も強調した方が良いと思う.とくに関数の一様連続性や一様収束などを学んでから,それらを高校で学んだ「限りなく近づく」という言葉で表現する方法を考えてみて,初めて新しい定義が新しい概念を記述するのに適した機能を持っていることがわかるのではないだろうか.
大体において,定義というのは感覚的に受け入れやすいかより,それに基づいてどれだけ豊かな理論が展開できるかで良し悪しが決まるので,
あまり急いで納得しようとしなくてもよいものである.
微積分を一通り学び終えたときにようやく意義がわかるのが普通だと思う.
次に技術的で低級な話だが,定義の中でεという特定の記号を使うことが混乱を招いているように感じることがある.具体的には

2ここを敢えて追求するなら,数学において「曖昧でない」ことの一つの表現が「一階述語論理で記述されている」ことであるという原則を知っておく必要がある.高校での極限の定義は一階述語論理で記述されておらず,それをもって「曖昧な定義」と言っているのである.しかしこの説明が現代的な定義の理解に役立つかというと,それはかなり疑問である.
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch