24/02/11 10:44:57.86 edo2n8cU.net
>>87
>>>38
>>この場合は条件の「3.全体の測度が1」を外して
>>全体の測度→∞ に発散すると考えるべき
>どの場合も確率を考えるのであれば
>「3.全体の測度が1」という条件を外す
>という選択はありえません
>>4です。>>10より再録します
(参考)
URLリンク(ai-trend.jp)
AVILEN Inc. 2020
2020/04/14
非正則事前分布とは?〜完全なる無情報事前分布〜
ライター:古澤嘉啓
目次
1 非正則な分布とは?一様分布との比較
2 非正則分布は確率分布ではない!?
3 非正則事前分布は完全なる無情報事前分布
4 まとめ
(引用終り)
ここから、「非正則な分布」のポイントを引用します
”非正則な分布とは、一様分布の範囲を無限に広げた分布のことです。”
”非正則分布は確率分布ではない!?
上で説明した非正則な分布ですが、よく見てみてください。確率の和が1ではありませんよね。”
”積分値が無限大に発散してしまいます。これは、全事象の確率は1であるというコルモゴロフの確率の公理に反しています。
よって、厳密には、非正則な分布は確率密度関数ではありません。なぜなら、確率の公理を満たしていないからです。それでもこの分布が使われる理由は、この分布には特有の特徴があり、それが事前分布として機能する上でとても有用だからです。”
(引用終り)
要するに
・世の中に、無理数があるごとく、「非正則な分布」がありまして、積分値が無限大に発散して 確率の和が1でなくなる
・従って、全事象の確率は1であるというコルモゴロフの確率の公理に反します!
・時枝の決定番号も上限がなく、決定番号は全ての自然数Nを渡り、積分値が無限大に発散してしまい、全事象の確率は1であるというコルモゴロフの確率の公理に反しています
・無理数を有理数にすることは無理です。同様に、「非正則な分布」である時枝の決定番号を 正則分布の如く扱うのは無理です
・そういう無理なゴマカシをしているのが、時枝の”箱入り無数目”です!!