スレタイ 箱入り無数目を語る部屋15at MATH
スレタイ 箱入り無数目を語る部屋15
- 暇つぶし2ch108:ウしい”と明言しており,定理1は,問題(C)の否定的解,すなわち,選択公理を本質的に使わないかぎり,ルベーグ可測でない集合は得られないということを示していると解釈されます. Solovayの観点からすれば“もちろん”ルベーグ可測でない集合が存在するわけですが,Vitaliの定理は純然たる“存在証明”ですから,可測でない集合を(ZFC集合論の枠内で)具体的に構成できるかどうか,という問題(D)は残ります. 定理2はこの問題(D)に否定的に答えます.つまり,集合論の論理式ϕについてZFC “実数の集合{x∈R:ϕ(x)}は可測でない”となることは,ZFCが矛盾するか,あるいは到達不可能基数が存在しないことがZFC集合論で証明できるといった,およそありそうもない状況を想定しない限り,起こりえない,というわけです. ただし,ここで述べた問題(D)の否定的解,すなわち「ZFC集合論においてルベーグ可測でない集合を明示的に定義することはできない」という主張は,定理2によって整合性が保証された,「数直線の明示的に定義可能な部分集合はすべてルベーグ可測である」という主張とは,きちんと区別する必要があります. というのも「数直線の明示的に定義可能な部分集合のうちに,ルベーグ可測でないものが存在する」という命題も,ZFC集合論と整合的である*4からです. *4たとえば,構成可能公理V=Lのもとでは,ルベーグ可測でない∆1/2集合が存在します. 続く第2節と第3節でいろいろの概念の準備をして,第4節と第5節でSolovayの二つの定理の証明を述べます. (引用終り) 以上
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch