24/02/11 09:04:49.88 edo2n8cU.net
つづき
P4
1.3測度の問題,Solovayの結果とその意義
Lebesgueは,自分の測度の理論の適用範囲が,彼が可測集合と名付けた点集合のクラスに限定されることを,正しく認識していましたが,“私は可測でないいかなる函数も知らないし,それが存在するかどうかも知らない,”とも明言しています(文献[11]の序文).
ルベーグ可測でない集合や関数の存在は,G.Vitaliによって, 1905年に出版された書物において示されました.
Vitaliは,単位線分を平行移動の意味で互いに(1を法として)合同な可算無限個の部分集合の和に分割できることを,選択公理を用いて示しました.
ルベーグ測度は,可算加法的で,平行移動のもとで不変であり,有界集合に有限の(外)測度を与えるので,Vitaliの集合はルベーグ可測であり得ないわけです.
Vitaliの証明が測度の問題に投じた一石はさまざまな波紋を呼び起こしました.
次のような問題が自然に浮かび上がってきます.
(A)平行移動のもとでの不変性をあきらめれば,可算加法的測度をすべての点集合に定義できるのでは?
(B)可算加法性を有限加法性に弱めれば,不変な測度をすべての点集合に定義できるのでは?
(C)選択公理の使用は不可避だろうか?
(D)ルベーグ可測でない集合をもっと明示的に定義できないだろうか?
問題(A)はS.Ulamの測度問題と呼ばれ,集合論の巨大基数研究のきっかけを作りました. (たとえば[7]の第9章, [8]の第2節を見なさい)
問題(B)はS.Banachによって(とくに1次元と2次元の場合に)肯定的に解かれましたが,平行移動だけでなく回転を含めた合同変換のもとでの不変性を要求すると,3次元以上の空間では,有限加法的不変測度も,すべての部分集合に対して定義することは不可能であることがわかっています.これは,いわゆるBanachとTarskiのパラドックスからの直接の帰結です.有限加法的不変測度の存在は,合同変換群の構造の研究の重要なテーマのひとつになっています. (例えば文献[19])
残る(C)と(D)に答えようというのが,Solovayの原論文の目的です.原論文での主要な定理は次の二つです. (到達不可能基数については,サブセクション4.2を見てください.)
定理1.ZFC集合論+“到達不可能基数の存在”のモデルが存在すれば,次の4個の命題が成立するようなZF集合論のモデルが存在する:
(a)従属選択の公理(AxiomofDependentChoice,DC),
(b)実数のあらゆる集合がルベーグ可測である(LM),
(c)実数のあらゆる集合がベールの性質を有する(BP),
(d)実数のあらゆる不可算集合が完全集合を含む(PS).
つづく