純粋・応用数学・数学隣接分野(含むガロア理論)18at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)18 - 暇つぶし2ch334:1×1の場合は、0でない実数を出力すれば終わり >n×nで正則行列が出来てるとして、そこから(n+1)×(n+1)の正則行列を作るには、以下の手順を実行する >1.1番目~n番目まで任意の実数、n+1番目に0でない任意の実数を入れた行ベクトルを作る >2.先のn×n行列に(n+1)列目をつくり、まずそこに0を入れたn×(n+1)行列を作る >3.2.で作ったn×(n+1)行列の各行ベクトルに、スカラー(0でもよい)×(1.で作った行ベクトル)を足す >4.n×(n+1)行列のどこでも適当な場所に、1.でつくった行ベクトルを挿入して、(n+1)×(n+1)行列にする ・くっさw  数学的帰納法もどきかよww ・そもそも、厳密な数学的帰納法になってないんじゃないの? ・もし、院試の問題ならば、”正則行列の定義”は書き下しておかないとね ・その上で、書き下した”正則行列の定義”を、n×n行列→(n+1)×(n+1)行列のところで  この(n+1)×(n+1)行列が書き下した”正則行列の定義”を満たしていることを論証する  これを抜かすと、大幅減点だろうね 追記 ・単に(n+1)×(n+1)の正則行列を作るだけならば、対角行列を作れば済む ・もっと簡単には、対角成分に1を入れておけば簡単でしょ? ;p) https://ja.wikipedia.org/wiki/%E5%AF%BE%E8%A7%92%E8%A1%8C%E5%88%97 対角行列(たいかくぎょうれつ、英: diagonal matrix)とは、正方行列であって、その対角成分((i, i)-要素)以外が零であるような行列のことである。 この対角行列は、クロネッカーのデルタを用いて (ci δij) と表現できる。




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch