23/12/18 23:37:43.32 QyoZ394S.net
>>660 自己レス
>>645より
>じゃ、第10章 4次元の罠の冒頭p155 見てくれる?
> すべての有限表示群を分類することは不可能なことが知られている(ノビコフ)。
> したがって、すべての4次元多様体の分類も不可能なのである。」
>ちなみに僕が持ってる版は1979年版
分かりました
松本先生の言いたいことは、下記の”Computability”の
”Manifolds in dimension 4 and above cannot be effectively classified”
だってことか!
筆滑っているのではなく、舌足らずだね
(参考)
URLリンク(en.wikipedia.org)
Classification of manifolds
In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.
Computability
The Euler characteristic is a homological invariant, and thus can be effectively computed given a CW structure, so 2-manifolds are classified homologically.
Characteristic classes and characteristic numbers are the corresponding generalized homological invariants, but they do not classify manifolds in higher dimension (they are not a complete set of invariants): for instance, orientable 3-manifolds are parallelizable (Steenrod's theorem in low-dimensional topology), so all characteristic classes vanish. In higher dimensions, characteristic classes do not in general vanish, and provide useful but not complete data.
Manifolds in dimension 4 and above cannot be effectively classified: given two n-manifolds (n≥ 4) presented as CW complexes or handlebodies, there is no algorithm for determining if they are isomorphic (homeomorphic, diffeomorphic).
This is due to the unsolvability of the word problem for groups, or more precisely, the triviality problem (given a finite presentation for a group, is it the trivial group?).
Any finite presentation of a group can be realized as a 2-complex, and can be realized as the 2-skeleton of a 4-manifold (or higher).
Thus one cannot even compute the fundamental group of a given high-dimensional manifold, much less a classification.
つづく