河東泰之「セミナーの準備のしかたについて」は本当に正しいのか?at MATH
河東泰之「セミナーの準備のしかたについて」は本当に正しいのか? - 暇つぶし2ch727:132人目の素数さん
23/12/18 15:59:57.53 CFQo1xiE.net
つづき

第2の位相構造の研究について報告する. これについては, S^4のインスタントン数2の場合の服部の研究があるが, 服部の指導を受けた神山により, この結果を拡張する形で, 一般のインスタントン数のS^4上のモジュライ空間の第2ベッチ数が消えることが証明された.
第3の4次元多様体への応用については, ドナルドソンの定理を応用して2次元球面の4次元多様体へのはめこみの自己交叉数を評価する久我の研究があるが, 古田は, ドナルドソンの定理そのものを改良することによって, 3次元ホモロジー球面のなす同境界【O!H】^3に関する驚くべき結果を証明した. すなわち, 【O!H】^3には無限指数の自由アーベル群が含まれる, という結果である. 【O!H】^3は4次元多様体論で重要な役割を果たす群であるが, 上記の古田の結果は, この群に関する, 現在世界最良の結果である.
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch