23/12/15 19:19:45.23 QAKDogeI.net
内包公理をやめても、「全ての集合の全体」を集合とするとやっぱり矛盾しますよ
カントールのパラドックスといいますけどね
要するに、全ての集合の全体からなる集合Vのベキ集合P(V)を考えた場合
P(V)はVより大きくなっちゃうってことですね
Vは固有クラスですが、Vの部分クラスで集合でなく固有クラスとなるものが存在します
有限集合だけが集合だとした場合、有限集合は無限にあるので
その全体Vは無限クラスですね そしてVの部分でも要素が無限にあれば
有限集合ではないので無限クラスになります そういうことです