河東泰之「セミナーの準備のしかたについて」は本当に正しいのか?at MATH
河東泰之「セミナーの準備のしかたについて」は本当に正しいのか? - 暇つぶし2ch333:ゥってる 馬鹿じゃないんだから >勉強のコツは、1ランク上の勉強をしておくことだ >つまり、高校までの数学を使うなら、その上の大学数学を >大学数学を使うならば、その上の院レベルの勉強を。そうすれば楽だ  多分その思い込みが間違ってる 見栄はって失敗するタイプだね  大学数学理解したいなら、高校数学  院レベルの数学理解したいなら、学部レベルの数学    あと、君が線形代数が理解できなかったのは  大学数学は理屈が大事ってことがわかってないせいかと  まあ、そういう大学生は沢山いるけどね  線形代数マジうぜーとかいってるのはだいたいそういうタイプ  高校までの数学は公式を暗記することでのみ乗り切ってる  そういう安直なサボりをつづけると考える脳みそが働かなくなる  日本の教育の最大の弊害だね



334:132人目の素数さん
23/12/11 06:40:32.53 /Rf9aONM.net
>>313
>一般の職業は沢山あるよ
>が、大学で就職に弱い学科がある。
>文系なら文学部だろう
>就職に強いのが、法学部とか経済学部とかだ
>理系で、就職に強いのが、工学部で
>その中でも、電気・電子や機械は、売り手市場
>弱かったのが、数学科だったろう、昔は
…そもそも大学に行ってない君には関係ないだろう
君は大学で何を学んだかちっとも話さない
隠してるから?違うな、そもそも行ってないから話せない
そんなところだな
君はただの囲碁将棋好きのそこらのおっさん
就職?君、自営業だろ
浪人中に現実逃避でガロア理論の本なんか読み始めて
大学には受からず 家業の●●業を継いだと
今は息子がやってるから暇で一日中ネットにはりつき
大学に受からなかった鬱憤を晴らしてるわけだ
君の将棋のスタイルは高飛車
とにかくハッタリで相手を威嚇する
でもこれが通用しないと実に脆い
正規部分群の定義は分かってない
ラグランジュの分解式は使えない
基本的なことはどれもこれも分かってない
君が大学に受からなかったのは幸せだよ
大学行っても単位とれずに落第して中退するのが落ちだから
そう思うと入試は全く意味がないわけでもない

335:132人目の素数さん
23/12/11 06:45:28.84 /Rf9aONM.net
>>314
AIの話がしたいなら情報学板に書きなよ
情報学板
URLリンク(rio2016.5ch.net)

336:132人目の素数さん
23/12/11 06:51:50.30 /Rf9aONM.net
>「類体論に至る道」は、手元にあるけど 数学漫談だね、面白いよ
 素人は数学書の定義、定理、証明は全く読まずに
 漫談のところだけ読んで面白がる
 
 君はコピペするとき好んで数学以外の文章ばかり選ぶ
 それで、ああ、こいつ、実は数学大嫌いなんだなあ、って分かる
 もう君のハッタリはここでは全然通用しないよ
 諦めて、他所に行きな 高卒で自営業者の「そこらのオッサン」君
 君が家業の●●業に愛着をもてなかったことは実に残念だ

337:132人目の素数さん
23/12/11 07:00:36.15 /Rf9aONM.net
ちなみに「そこらのおっさん」の元ネタはこちら
この人は私ごとき者から見れば実に優れた人物であるが
そんな人でも数学界の現実にブチあたって
「私は数学者でも何でもありません、その辺のおっさんです」
とかいっちゃうのである 闇は深い
URLリンク(www.ritsumei.ac.jp)

338:132人目の素数さん
23/12/11 07:00:42.85 CaqiMyA/.net
「孫子算経から高木類体論へ - 割算の余りの物語」
大沢健夫著 現代数学社
12月11日発売

339:132人目の素数さん
23/12/11 08:20:33.08 LDjjScyh.net
>>321
ありがとう
それは面白そうだね

340:132人目の素数さん
23/12/11 08:23:46.99 LDjjScyh.net
>>314 追加
(参考)
URLリンク(www.nikkei.com)
日経
「予算ない筑駒」での経験、AI起業の糧に 西川徹氏
西川徹・プリファードネットワークス社長が語る(下)
2018年3月12日

2017年末、テレビのバラエティー番組で、西川氏の受験勉強法が「赤点だらけの成績から受験勉強3カ月で東大に現役合格」とセンセーショナルに取り上げられ、話題になった。

筑駒に入ったときと同様、東大に進もうと思ったのも、動機はコンピューターでした。筑駒時代、東大の情報科学科の先生がインターネット上で公開していた講義資料をよく読んでいました。こんな面白いことを学べるんだったら、自分もぜひその先生のところで勉強したい。そう思ったのです。

それにはまず東大に合格しなければなりません。ところが、受験勉強を始める前の東大模試の成績は、理科1類の志望者が5000人いる中で、4500番くらい。合格するにはこれから3000人以上抜かないといけない。これは困ったなという状況でした。

私は、別に勉強が嫌いではありませんし、それまでも結構勉強はしていました。それなのに模試の成績が悪かったのは、科目の好き嫌いがはっきりしていて、嫌いな科目、暗記科目は徹底的にサボっていたからです。数学でさえも、公式を覚えなくてはならない受験のための数学は大嫌いでした。理論さえ理解すれば、そんなものは、コンピューターにやらせればあっという間に解けるのに、その作業をなぜ人間がやらなければならないのか、理解できませんでした。

筑駒にはそういう生徒が結構多いように思います。6年間、好きなことを思う存分やって、大学受験の勉強は最後の最後に集中してやる。それでもみんな何とかなるだろうと楽観的でした。

私が入試直前の3カ月間でやったのは、徹底した取捨選択です。例えば、化学は理論化学、無機化学、有機化学とありますが、理論化学は暗記しなくても解けるので全問正解を目指す。無機化学は完全に暗記なので最初から捨てる。有機化学はパズルなので、問題集を1冊やってパズルを解く練習をする。問題集は1日12時間、3日で終わらせる計画を立て、その通り3日間で勉強を済ませました。数学や国語など他の科目も同じように勉強したら、何とか合格できました。

341:132人目の素数さん
23/12/11 11:06:25.34 wpOTPANf.net
戻る 再録
>>230
>ID:NnIOA1O1 はなんか実績あげられなくて情緒不安定になってるみたい
>数学の研究なんてヤバいこと仕事にしなくて本当に心の底から良かったと思うよ
>狂ってまで数学したいなんて思わんし

よくいうね
口だけ達者だな

話を戻すよ

だれが、”【ひろゆきも使っている】ストローマン論法”を使っているのか?
それは、あなたですw

・一編の査読投稿論文もない、つまり プロ数学研究者になれなかった人
・情報系に転じるも、多分そこでも挫折したんだ
・統合失調症の薬を常用しているかもしれない人にいうもの酷だが
 河東氏のゼミの運営方針 に悪乗りして
 「河東氏のゼミ同様の勉強が出来なければ、数学が理解できないはず」
 「悪いこと云わないから即刻転科しな」>>176
 と宣う人よ
・それを批判されると、論点をずらすべく、個人攻撃をはじめるw
・数学板で、それで通用すると思っているんだぁwww

あなたが語るべきは
1)自分の数学科での失敗体験とその反省
2)その上で、こうしたら良かったと思うってこと
 (成功体験があれば、それも可だよ)
3)その上で、河東氏のゼミの運営方針>>1 について語るべきじゃないの?
(引用終わり)

・さて、基礎論じまんくんの話をまとめると(すべてが真実とか、すべてを語ったとは思わないが、一応是として)
 1)某私大数学科に迷い込んで、しかし、最初からがっかりしたという
 2)興味を持てた科目や書籍なし
 3)数学の勉強で、成功体験なし
・だったら、 「河東氏のゼミ同様の勉強が出来なければ、数学が理解できないはず」
 「悪いこと云わないから即刻転科しな」に
 なんら事実や実績の裏付けなし という結論になる

342:132人目の素数さん
23/12/11 12:01:42.65 XV1DGUZQ.net
>>324
自分の質問を繰り返して、相手の回答>>296は一切引用しないとか
おかしなことするね 大丈夫?

>さて、基礎論じまんくんの話をまとめると
 どこから「基礎論」が出てくるのか分からんなぁ

>某私大数学科に迷い込んで、しかし、最初からがっかりしたという
 気づいただけ賢いんじゃね? 
 気づこうともしない残念な奴もいるんだから

>興味を持てた科目や書籍なし
 他に面白いこと探せばいいんじゃね? 
 いつまでも「俺はガロア理論が好きな筈!」と固執しつづけるのはおかしいよ

>数学の勉強で、成功体験なし
 他で成功すればいいんじゃね?
 いつまでも「オレは数学で成功できる筈!」と力みかえるのは哀れだよ

>だったら、
>「ゼミ同様の勉強が出来なければ、数学が理解できないはず」
>「悪いこと云わないから即刻転科しな」
>になんら事実や実績の裏付けなし という結論になる
 どこぞのだれぞの「チラ見勉強法」「サーチ&コピペ勉強法」も
 やればやるほど間違いだらけで、むしろ有害の裏付けばかり増えてますなあ
 当人は頑として自分の失敗を認めようとしないけど
 本家ひろゆき同様、数学板のひろゆきIIも、みっともないだけですなあ

 そもそも別に数学理解しなくてはならない義務なんてないし
 数学に興味ないなら転科すればいいんじゃね?
 それを数学に負けたというのはマゾヒズムだよ
 やりたいやつはやればいい 勝ち負けじゃないんだよ
 なんでもかんでも勝ち負けだと思うなんてつくづくおかしな人だねえ

343:132人目の素数さん
23/12/11 12:23:07.68 wpOTPANf.net
>>312
>1)理系では、「数学は力」なんだよね
> 物理とか化学とか、いろんなことのベースに数学がある

追加
(参考)
URLリンク(www.kurims.kyoto-u.ac.jp)
山下真由子
URLリンク(www.kurims.kyoto-u.ac.jp)
論文
2.Remarks on mod-2 elliptic genus, with Y. Tachikawa and K. Yonekura. preprint. URLリンク(arxiv.org)

共同研究者 Y. Tachikawa 日本の理論物理学者
URLリンク(ja.wikipedia.org)
立川 裕二(たちかわ ゆうじ、1979年10月5日 - )は、日本の理論物理学者。東京大学国際高等研究所カブリ数物連携宇宙研究機構教授。専門分野は素粒子物理学、特に超弦理論における場の理論や数理物理など[1]。
経歴
1998年、灘高等学校卒業。灘中学校・高等学校在学中には、国際数学オリンピックの日本代表に2回選出された。1995年(日本予選:中学3年[2][3]、国際大会:高校1年)の第36回カナダ大会、1996年(日本予選:高校1年[2][3]、国際大会:高校2年)の第37回インド大会に連続出場し、共に銀メダルを獲得した[4]。当時のメンバーに中島さち子がいる[4]。
1998年、東京大学理科一類入学。東京大学理学部物理学科卒業。

別に
URLリンク(www.sekaiwokaeyo.com)
最先端研究を訪ねて
素粒子物理学の最大の難問、重力の物理法則の解明に挑む
高柳匡先生
京都大学
理学研究科 物理学・宇宙物理学専攻/基礎物理学研究所
この道に進んだきっかけ
中学・高校では、数学がとても好きであったが、もともと物理にはそれほど関心を持っていなかった。高校3年生の時に、自宅から塾まで電車に1時間程度かけて通っていたが、幸いに帰りは始発駅から乗るので毎回座れた。その時間を使って、受験勉強ではなく大学の物理学の教養課程の教科書を読んでいた。そこで、物理法則を高校の教科書とは違い(偏)微分方程式で記述する手法に、強い感銘を受けた。
特に、電磁気学のマックスウェル方程式の美しさに感動し、理論物理学を志すきっかけとなった。今思うとその美しさの理由こそ、電場と磁場を入れ換える双対性と呼ばれる素粒子論で重要な対称性であった。

URLリンク(ja.wikipedia.org)
高柳 匡(たかやなぎ ただし、1975年 - )は、日本の物理学者。専門は素粒子物理学[1]。京都大学基礎物理学研究所教授。
笠真生とともにAdS/CFT対応におけるエンタングルメント・エントロピー(英語版)に関する笠-高柳予想(英語版)を提唱した[2]。
略歴
1994年 駒場東邦高等学校卒業
1998年 東京大学理学部物理学科卒業

344:132人目の素数さん
23/12/11 12:47:00.79 LCMc5afN.net
>>326
他人のことはいいよ

自分は大卒だと言い張るんなら
大学名は恥ずかしくて書�


345:ッないなら書かなくていいから どこの学科にいて何をやってきたか具体的に書いてみて 線形代数も理解してない人でもできる工学の分野って どんなんか大いに興味あるから



346:132人目の素数さん
23/12/11 13:18:41.59 wpOTPANf.net
>>326 追加

URLリンク(www.sekaiwokaeyo.com)
最先端研究を訪ねて 【解析学基礎】
フォンノイマン因子環
純粋数学の研究を行い、量子情報理論の問題に行き当たる
小沢登高先生 京都大学理学研究科 数学・数理解析専攻/数理解析研究所

◆この研究を通じて、どんな課題が解決されましたか。
フォンノイマンは、ゲーム理論で有名な20世紀を代表する天才数学者です。フォンノイマン因子環は、フォンノイマンが量子力学の数学的な枠組みとして考案したものです。私はその数学的な側面を研究してきましたが、最近私の研究が、量子通信や量子コンピュータの理論的側面を扱う量子情報理論と関係していることを知りました。
そこでこの問題に取り組んだ結果、フォンノイマン因子環に対する数学的な未解決な予想が、一見まるで無関係な量子情報理論における予想と同値であることの証明に成功しました。

◆ブレークスルーする研究の原動力は何ですか
自分が培ってきた技術とその後の努力で解決できた課題も多くありますが、やはり嬉しいのは、課題を鮮やかに解決するアイディアを思いついた時です。良いアイディアというのは、一度気がついてみれば当たり前になることが多いものですが、どうしてそれに気がついたのか、あるいは気がつかなかったのかは、自分でも説明することができません。こうした驚きに対する感動が、研究を進める原動力となっています。

この道に進んだきっかけ
子供の頃から、漠然と科学者になりたいと思っていました。中高生時代は、大衆向けの科学雑誌や書籍から学んだ宇宙論に、憧れを持ちました。当時は、数学の研究が現代でも行われていることすら知らなかったのです。

ところが、東大の教養学部(前期課程)で現代的な数学に出会ってその魅力に取りつかれ、数学科に進学することになりました。(とはいえ、勉強に打ち込んだのは4年生以降のことです)

大学院で過ごした数年の間に、数学が自分の使命だと確信するようになりましたが、何か特別な「きっかけ」があったわけではありません。その場その場であった小さな呼びかけに応えた結果だと思います。きっかけというものは事後にそうだったと分かるもので、その時に知ることはできないものです。だから皆さんには、主体的にいろんなことを学んでほしいと思います。

先生に一問一答
Q1.18歳に戻って大学に入るなら何を学ぶ?
自分が数学者であることに満足しています。というか、宗教的情熱をもって数学研究にあたっています。

Q3.熱中したゲームは?
大学生の頃までは、随分とゲームをしていました。スーパーファミコンでした

347:132人目の素数さん
23/12/11 13:24:01.80 TkM2xCFJ.net
>>328
他人のことはいいよ

自分は大卒だと言い張るんなら
大学名は恥ずかしくて書けないなら書かなくていいから
どこの学科にいて何をやってきたか具体的に書いてみて
線形代数も理解してない人でもできる工学の分野って
どんなんか大いに興味あるから

348:132人目の素数さん
23/12/11 14:04:58.10 fDze9J+w.net
横だけど、ガロア理論のスレ主は阪大の鉱山学科の修士卒じゃなかったか

349:132人目の素数さん
23/12/11 14:08:27.83 wpOTPANf.net
>>328
>最先端研究を訪ねて 【解析学基礎】
>フォンノイマン因子環

量子力学の黎明期、当時の物理学者にとって
ヒルベルト空間 それは無限次元の空間であり、無限次元の行列との組み合わせ
は、全く馴染みなしだった
しかしそれが、いまのフォンノイマン因子環に繋がっている

URLリンク(academic-accelerator.com)
Academic Accelerator 百科事典
Quantum


350:Mechanics = 「古い量子理論」と新しい数学の必要性 = =「新しい量子理論」= ハイゼンベルクの行列力学は、観察された原子スペクトルの量子化を再現する最初の成功した試みでした。同年後半、シュレディンガーは波力学を創設しました。シュレーディンガーの形式主義は、物理学者がすでに慣れ親しんでいた微分方程式につながるため、理解、視覚化、計算が容易であると考えられていました。 1 年以内に、2 つの理論は同等であることが示されました。 ハイゼンベルクが行列力学を発明しました。これは最初の正しい量子力学であり、本質的なブレークスルーでした。ハイゼンベルクの行列力学の定式化は、無限行列の代数に基づいており、古典物理学の数学に照らして非常に急進的な定式化でした ボルンがすぐに彼に指摘したように、それは行列だった。実際、初期の頃、現在の形式の線形代数は物理学者の間で一般に人気がありませんでした。 シュレーディンガー自身はその1年後に波動力学とハイゼンベルクの行列力学が同等であることを証明したが、この2つのアプローチの調和とヒルベルト空間での運動としてのそれらの現代的な抽象化は、一般に1930年代になってからである。 これは、1940 年代の古典的で明快な記述を書いたポール ディラックによるものであると考えられています。 量子力学の原理。彼はこの分野の 3 番目であり、おそらく最も重要な柱です (そしてすぐに理論の相対論的一般化を発見した唯一の人物になりました)。上記の議論で、彼は関数解析で使用されるヒルベルト空間の抽象定式化とともに括弧表記を導入しました。彼は、シュレディンガーとハイゼンベルクのアプローチが同じ理論の 2 つの異なる表現であることを示し、システムのダイナミクスを説明するための 3 番目の最も一般的なアプローチを発見しました。 ディラック・フォン・ノイマンの公理として知られるこのアプローチの最初の完全な数学的定式化は、一般にジョン・フォン・ノイマンの 1932 年の著書『量子力学の数学的基礎』に起因すると考えられています。 , ヘルマン・ワイルはすでにヒルベルト空間(彼はユニタリー空間と呼んだ)について言及していた。彼の 1927 年の古典的な論文と書籍。これは、一世代前の David Hilbert のアプローチである、 つづく



351:132人目の素数さん
23/12/11 14:09:00.37 wpOTPANf.net
つづき

数学ツールのリスト
この主題に関する民間伝承の一部は、ゲッティンゲン大学のデヴィッド・ヒルベルトのコースからリチャード・クーラントによって編纂された数理物理学の教科書「数理物理学の方法」に関係しています。この話は(数学者によって)語られており、シュレーディンガー方程式が現れるまで、物理学者はそれを現在の研究分野では興味のない物質として無視していました。その時点で、新しい量子力学の数学がすでに組み込まれていることが判明しました。

ハイゼンベルクはまた、自身の行列力学についてヒルベルトに相談したと言われており、ヒルベルトが無限次元行列の経験が微分方程式から得られたものであることに気づいたとき、ハイゼンベルクはそのアドバイスを無視し、ヴェイユやディラックのように理論​​を統一する機会を逃した。何年か後。逸話の根拠が何であれ、理論数学は当時は常識的でしたが、物理学には根本的に新しいものでした。

ディラック・フォン・ノイマンの公理として知られるこのアプローチの最初の完全な数学的定式化は、一般にジョン・フォン・ノイマンの 1932 年の著書『量子力学の数学的基礎』に起因すると考えられています。 , ヘルマン・ワイルはすでにヒルベルト空間(彼はユニタリー空間と呼んだ)について言及していた。彼の 1927 年の古典的な論文と書籍。これは、一世代前の David Hilbert のアプローチである、

線形演算子に基づく数学的スペクトル理論への新しいアプローチと並行して開発されました。量子力学の理論は今日まで進化し続けていますが、ほとんどのアプローチの基礎となる量子力学の数学的定式化には基本的な枠組みがあり、その起源はジョン フォン ノイマンの数学的研究にあります。言い換えれば、理論解釈とその拡張に関するほとんどの議論は、現在、数学的基礎に関する共通の仮定に基づいています。
(引用終り)
以上

352:132人目の素数さん
23/12/11 14:16:39.95 XV1DGUZQ.net
>>330 
阪大には昔も今も鉱山学科はないな 

 冶金学科
→冶金・金属材料工学科
→2つに分裂

 冶金工学科
→材料開発工学科

 金属材料工学科
→材料物性工学科

 両者とも応用理工学科に統合

 なんか数学使わなそう

353:132人目の素数さん
23/12/11 15:09:45.05 fDze9J+w.net
>>333
そうか、ガロア理論スレか箱入無数目スレのどっかにかいてある

354:132人目の素数さん
23/12/11 15:13:19.81 fDze9J+w.net
>>333
阪大の資源工学卒だった、山師には違いないw

355:132人目の素数さん
23/12/11 15:24:05.75 IZa6Ydlv.net
河東研出身の人の下でゼミをしているが、何も見ずに発表しろという決まりはない。しかし基本的にメンバーは数枚原稿を用意するだけで何も見ずに発表する。(詰まれば参照する)
そもそも、ゼミで質問されたときにきちんと答えられるくらいにテキストを読み込んでおけば、数時間の発表で消化する内容くらいは自然と覚えてしまう。
直接河東先生に話を伺ったことはないが、「何も見ずに発表する」ことが大事なのではなくて、テキストの理解の基準としてこれを挙げているだけではないだろうかと思う。

356:132人目の素数さん
23/12/11 15:34:18.70 2bE+76qZ.net
>>335
資源工学科もないな
冶金か金属材料かどっちかか
どっちも数学つかわなそう

357:132人目の素数さん
23/12/11 16:29:10.50 wpOTPANf.net
>>331 追加
参考
URLリンク(ryuyengineer-log.com)
機械系技術者が日々の生活での気づきを発信します
技術者視点で日々の生活をちょっと豊かに
固有値・固有ベクトルなんの役に立つ?~初学者向け入口の話~ 2023.06.18
目次
こんな人に読んでもらいたい記事です
結論
固有ベクトルって何が便利?
「行列の固有値,固有ベクトルを求める」とは,つまり?
「固有値がわかると何がうれしい?」の一例→方程式を解きやすく!
【実例】機械や建物のモード解析
【おまけ】どう勉強するのが良い?
①固有値・固有ベクトルの数学的基礎・計算方法
②固有値・固有ベクトルの使われ方
おわりに
こんな人に読んでもらいたい記事です
・「固有値」,「固有ベクトル」という言葉を聞いたけど,
結局なんの役に立つんだよ
・固有値解析・モード解析って結局なに?
という人
結論
・固有値,固有ベクトルは数学的な説明と,物理的な場面での説明が
うまく結びつきにくい話だと考えています.
→自分も初学者のときはなかなかイメージをつかみにくかったです.
・「行列の固有値,固有ベクトルを求める」とは?
「変換行列(拡大縮小&回転)による一次変換」を
『「定数(固有値)×ベクトル(固有値ベクトル)」の和』で表現すること
・固有値・固有ベクトルがわかると何がうれしい?
①固有値・固有ベクトル行列を使って行列を書き換えることができる
②行列とベクトルで表現された連立方程式(複数の式の関係性を考えないといけない)を
独立した方程式(非錬成)にすることができる
→方程式を解くのが楽になる!
URLリンク(gihyo.jp)
技術評論社
これでわかった!シリーズ
物理と工学で使う行列と固有値
[表紙]物理と工学で使う行列と固有値
2010年9月23日 谷克彦 著
こんな方におすすめ
工学部学生
線形代数の応用を知りたい人
画像解像度の処理など,高次元のデータ処理に興味がある人

358:132人目の素数さん
23/12/11 16:37:40.11 wpOTPANf.net
>>336
>そもそも、ゼミで質問されたときにきちんと答えられるくらいにテキストを読み込んでおけば、数時間の発表で消化する内容くらいは自然と覚えてしまう。
>直接河東先生に話を伺ったことはないが、「何も見ずに発表する」ことが大事なのではなくて、テキストの理解の基準としてこれを挙げているだけではないだろうかと思う。
ありがとう
お説の通りと思います
1)まず、確認しておきたいことは
 ゼミの準備は、一番はこれが本人の力を上げることになるってこと
 準備をすればするだけ
2)次に、ゼミの準備と普段の勉強は、分かるべきと思う
 普段の勉強をゼミの準備なみにしたら、他の勉強ができないだろう
 うまくバランスをとるのがいいと思います

359:132人目の素数さん
23/12/11 17:17:01.64 /Rf9aONM.net
けっきょくどこの学科か書けないところをみると
やっぱり大学入れなかったんだな
大学行ってて線形代数の初歩から分かってないとかあり得ない
単位とれないから卒業できないよな

360:132人目の素数さん
23/12/11 17:36:10.26 fDze9J+w.net
>>340
君は何処の大学の数学科なの?

361:132人目の素数さん
23/12/11 17:37:13.97 /Rf9aONM.net
食肉の生産
主に畜産によって生育させられた動物は、屠畜場(食肉工場)へ送られ、
屠殺(屠畜、屠鳥)され解体され、食肉が製造される。
そして必要に応じて熟成を施したり、ハムなど加工肉の原料となる。

362:132人目の素数さん
23/12/11 17:38:00.78 /Rf9aONM.net
屠畜場(とちくじょう、漢字制限により「と畜場」とも)は、
牛や豚、馬などの家畜を殺して(屠殺して)解体し、
食肉に加工する施設の名称である。
屠殺場、食肉処理場、食肉解体施設、食肉工場などともいう。

363:132人目の素数さん
23/12/11 17:39:46.81 /Rf9aONM.net
日本のと畜場法においては、生後1年以上の牛若しくは馬
又は1日に10頭を超える獣畜をと殺し、
又は解体する規模を有すると畜場を 一般と畜場、
それ以外のと畜場を 簡易と畜場 として区別している。
と畜場は、全国に195か所(うち、一般と畜場は183か所、簡易と畜場は12か所)ある
(2017年〈平成29年〉4月現在)。

364:132人目の素数さん
23/12/11 17:41:03.50 /Rf9aONM.net
と畜場法に基づく食肉用動物である家畜
(日本では牛、馬、豚、緬羊、山羊の5種類の家畜のみで鹿や猪は法の対象外)
は、搬入された後シャワーで汚れを洗い流してから食肉衛生検査所
あるいは保健所に所属する獣医師である「と畜検査員(地方自治体の職員)」
による病気等外観の検査(生体検査)を受ける。

365:132人目の素数さん
23/12/11 17:42:04.43 /Rf9aONM.net
屠殺は、前頭部への打撃、あるいは電撃や二酸化炭素によって昏倒させたあと、
大動脈を切開し放血殺する方法で行われる。
昏倒させてから放血殺する方法が採用されるのは、
安楽殺という動物福祉の観点からでもあるが、
速やかに死に至らしめられなかった場合、
ストレスによる筋変性や放血不良によって肉質が悪くなったり、
恐怖した家畜が暴れ自ら筋肉や骨を損傷したりするなど、
枝肉の商品価値を損なわないためという側面が大きい。

366:132人目の素数さん
23/12/11 17:42:09.85 fDze9J+w.net
誤魔化しに必死な教えて君()

367:132人目の素数さん
23/12/11 17:42:56.48 /Rf9aONM.net
切開後、両後肢の飛節に通した鉄棒をフックで吊り上げ、
失血させながら施設の天井に取り付けたレールに沿って各作業配置を順に廻り、
解体されていく(オンライン方式)。
牛では昏倒させる場所を施設の階上に設けるか、
あるいは吊るした体を動力で階上へと引き上げてから
自重と人力だけで容易に各作業場所間を移動できるようになっている。
その途中で適宜屠畜検査員により病変組�


368:Dのサンプリングと 検査(解体後検査)が実施される。



369:132人目の素数さん
23/12/11 17:43:59.87 /Rf9aONM.net
解体順序はごくおおざっぱに言って、
頭部切断・剥皮・内臓の摘出・背割り・枝肉検査などと続き、
半頭分の肉の塊(半丸枝肉)となる。
たいていは解体ラインの階下に
白モツ(胃腸など)、赤物(肝臓・心臓など胸腔臓器)などの
内臓を分別・洗浄・パッキングするための作業場があり、
ラインで切り離された臓器をシュートに投入することにより
下の内臓処理作業場に送られる仕組みになっている。

370:132人目の素数さん
23/12/11 17:44:27.42 fDze9J+w.net
教えて君は複素解析に興味を持っていて、不名誉教授を崇拝してます(笑)

371:132人目の素数さん
23/12/11 17:45:17.54 /Rf9aONM.net
食肉市場で取引された枝肉は食肉加工場で大分割されブロック肉となる。
そこからさらに精肉店や、スーパーマーケットなどに搬送され、
ももやヒレなどの部位に小分割され、一般消費者に市販される。

372:132人目の素数さん
23/12/11 17:46:54.81 fDze9J+w.net
教えて君は攻めには強いが守りが弱い、某野党みたい

373:132人目の素数さん
23/12/11 17:47:14.31 /Rf9aONM.net
>>341 俺は中卒の●●業者だよ あんたは?

374:132人目の素数さん
23/12/11 17:48:50.77 /Rf9aONM.net
複素解析?なんのことだい? 例の教授のことなら、特に興味もないね

375:132人目の素数さん
23/12/11 17:50:31.53 /Rf9aONM.net
俺には攻めも守りもないよ
大阪の同業者みたいに、他人にマウントしたいとも思わんし
ダメなやつにダメといってるだけ いやなら他所行きなってこった

376:132人目の素数さん
23/12/11 17:54:20.91 /Rf9aONM.net
大阪の同業者が自分の仕事を自慢できないのは残念なこった
数学なんかじゃ世間の連中の胃袋は満たせねえ
余計なことに首つっこみしかもそれすら分かってねえ
それじゃどうしようもねえから仕事に専念しなってこった

377:132人目の素数さん
23/12/11 17:57:37.98 fDze9J+w.net
>>353
駿台数学科

378:132人目の素数さん
23/12/11 17:58:08.00 /Rf9aONM.net
ちなみに俺は大阪の同業者を勝手にこのマンガの「テツ」みたいな奴だと思ってる
実写版だったら・・・古田新太でw
URLリンク(ja.wikipedia.org)

379:132人目の素数さん
23/12/11 18:03:37.69 fDze9J+w.net
糞は糞を呼ぶ

380:132人目の素数さん
23/12/11 18:07:43.51 /Rf9aONM.net
俺?俺はこのマンガの”ジョー”のイメージw
URLリンク(www.youtube.com)

381:132人目の素数さん
23/12/11 18:14:08.75 qjPuaayX.net
クソっていえばおっちゃんによるオイラーの定数γは
超越数ではないから γ∈Q なることの証明があったよな

382:132人目の素数さん
23/12/11 18:25:32.82 fDze9J+w.net
おっちゃんもこのスレにいると思うよ

383:132人目の素数さん
23/12/11 18:26:34.40 fDze9J+w.net
>>361
最近はγは超越数だっていってたはず

384:132人目の素数さん
23/12/11 18:30:15.93 fDze9J+w.net
204 返答 名前:132人目の素数さん[sage] 投稿日:2023/09/26(火) 18:21:17.78 ID:EYh/szsg [1/3]
>>194
私が箱入り無数目の議論に参加していないからといって、
私の間違いを何度も提示することは止めてくれ
この間違いについては、気付きにくい間違いだということで、
君より基礎論や箱入り無数目などに詳しい人物から散々指摘を受けた
オイラーの定数γは、実は無理数どころか超越数だった

385:132人目の素数さん
23/12/11 18:49:38.96 qjPuaayX.net
>>363
私の証明について検討したら、実質的には合っている
γは代数的無理数ではないことは背理法で証明出来る
だから、γは有理数か超越数のどちらか


386:になる γは各項 1+1/2+1/n-log(n) が超越数なるような実数列の極限だから、 γに収束し各項 q_n/p_n p_n>0 が |γ-q_n/p_n|<1/(p_n)^2 を満たす既約な有理数列 {q_n/p_n} p_n>0 は存在する 以前はγが代数的無理数ではないことの証明をすっ飛ばして そのγに収束する既約な有理数列 {q_n/p_n} p_n>0 について 背理法による議論をして矛盾を導いていたということ



387:132人目の素数さん
23/12/11 18:52:24.27 jpum57sp.net
>>322
重大な誤植が見つかったので
発売が来月に延期された

388:132人目の素数さん
23/12/11 18:54:16.45 qjPuaayX.net
訂正:|γ-q_n/p_n|<1/(p_n)^2 を満たす → |γ-q_n/p_n|≦1/(p_n)^2 を満たす

389:132人目の素数さん
23/12/11 18:56:13.06 fDze9J+w.net
あーぱーの偽おっちゃんか

390:132人目の素数さん
23/12/11 18:57:13.18 fDze9J+w.net
糞スレの住人全集合(ハゲワラ)

391:132人目の素数さん
23/12/11 18:57:50.54 2vgR0yst.net
なんで唐突におっちゃんの話をするのか知らんが
バカを召喚しても自分が賢いことにはならんよ

392:132人目の素数さん
23/12/11 18:59:47.42 qjPuaayX.net
訂正:γは各項 1+1/2+1/n-log(n) が超越数 → γは各項 1+1/2+…+1/n-log(n) が超越数

393:132人目の素数さん
23/12/11 19:00:20.86 fDze9J+w.net
>>1
スレタイ変更
純粋・応用数学・数学隣接分野(含むガロア理論)(外道)

394:132人目の素数さん
23/12/11 20:04:40.78 kpFEJO/N.net
>>340
>大学行ってて線形代数の初歩から分かってないとかあり得ない

?「ククク、それはどうかな…」

395:132人目の素数さん
23/12/11 20:30:33.04 /Rf9aONM.net
>>373
(小声で)実際は大いに有り得るけど、声高に叫ぶようなことじゃないだろ

396:132人目の素数さん
23/12/11 21:18:10.13 LDjjScyh.net
>>333
>なんか数学使わなそう
使わないこともないんだな
分かり易い例が、下記の連続体力学
歴史的には、複素解析で有名なCauchyさんが考えたのだが
応力解析のテンソルが使われている
まあ、昔々は数学と物理の境界は、いまほどハッキリしていないんだよ
ガウスも物理やっていた(天文とか磁気とか)
(参考)
URLリンク(www.research.kobe-u.ac.jp)
連続体力学 飯塚 敦 神戸大学
URLリンク(en.wikipedia.org)(mechanics)
Stress
History
With those tools, Augustin-Louis Cauchy was able to give the first rigorous and general mathematical model of a deformed elastic body by introducing the notions of stress and strain.[6]
Cauchy observed that the force across an imaginary surface was a linear function of its normal vector; and, moreover, that it must be a symmetric function (with zero total momentum).
The understanding of stress in liquids started with Newton, who provided a differential formula for friction forces (shear stress) in parallel laminar flow.

397:132人目の素数さん
23/12/11 21:26:17.05 LDjjScyh.net
>>366
>重大な誤植が見つかったので
>発売が来月に延期された
それは、ざんねん
発売されたら、教えてください
URLリンク(www.gensu.jp)
孫子算経から高木類体論へ 割算の余りの物語
2023/11/22 | 近刊
孫子算経から高木類体論へ
割算の余りの物語
大沢 健夫 著
A5判/198頁

398:132人目の素数さん
23/12/11 21:36:37.96 /Rf9aONM.net
>>375 やっぱ使ってないや

399:132人目の素数さん
23/12/11 23:20:09.57 LDjjScyh.net
”数学界以外で活躍する東


400:大数学科卒” http://www.kawabekeiji.com/%E7%A4%BE%E4%BC%9A%E8%AB%96/%E6%95%B0%E5%AD%A6%E7%95%8C%E4%BB%A5%E5%A4%96%E3%81%A7%E6%B4%BB%E8%BA%8D%E3%81%99%E3%82%8B%E6%9D%B1%E5%A4%A7%E6%95%B0%E5%AD%A6%E7%A7%91%E5%8D%92/ 河辺啓二 kawabekeiji.com 2023年2月19日 / 最終更新日時 : 2023年3月26日 kawabe 数学界以外で活躍する東大数学科卒 ・・・・・・・・・・・・・河辺啓二の社会論(31) 〈数学科卒の経済学者が日銀総裁に〉 〈経済学には数学が必要〉 さて、その植田氏、学歴が「東京大学理学部数学科卒業、東京大学経済学部学士入学」である。レベルは大幅に低いが、私も、国家公務員試験に向けて経済学を独学したとき、確かに数学の知識は多用したものだ。「数学」→「経済学」という流れは極めて自然だ。代表選手は、やはり東大理学部数学科卒の宇沢弘文先生(故人)だろう。専門が数理経済学で、たしかノーベル経済学賞候補になることがあったと思う。私が工学部生でこっそり経済学を勉強していた頃、工学部の講義をさぼっては経済学部の講義を聴きに行ったものだ。印象に残っているのは、館龍一郎先生の「金融論」くらいで、他の講義は覚えていない。 〈東京大学理学部数学科〉 東京大学理学部数学科といえば、そりゃとんでもなく数学ができる大秀才、天才が全国から集まる。私が理科Ⅰ類に在学していた頃の記憶では、理Ⅰでもトップクラスの成績がないと理学部の物理学科や数学科に進学できなかったはずだ。その数学科だが、キャンパスは本郷でなく駒場だということは卒業後ずっと後で知った。知り合いに数学科生ほどの秀才がいなかったからか・・・。 〈アタマ切れすぎ髙橋洋一さん〉 植田氏と同じ「東京大学理学部数学科卒業、東京大学経済学部学士入学」といえば、同氏より4年ほど後輩に当たる髙橋洋一氏がいる。 10年以上も前の話だが、警察のミステイクで「ドロボー扱い」され、(元政府要人だけに)大きく報道された。ちょうどまだそのほとぼりが冷めない頃、蟄居中の髙橋さんに、(「今だったらヒマで答えてくれるかもしれない」と思い)当時数検1級の壁に苦しんで何時間考えてもわからない数学の問題をメールで教えを請うたことがある。驚いたことに、あっという間にその解答をメールで返答してくれたのだ。まさに脱帽。彼の異次元のアタマのよさに感服した次第。 〈頑張れ、鶴ちゃん〉 東京大学理学部数学科卒業で数学界以外で活躍する4人めは、ぐんと若返ってTBS「東大王」の鶴崎修功君である。 コロナ禍前の2019年秋の鉄門旅行(東大医学部同窓会旅行)の際、当時の「東大王」大将の水上颯君と宴席でお話したときのこと。同い年の鶴ちゃんについて 「彼はずっと東大に残って「東大王」を続けるんじゃないかな」 と語っていた。当時、水上君は医学部6年生、鶴ちゃんは大学院修士課程2年生だった。翌2020年春、水上君は医学部と「東大王」を同時に卒業して医師に。鶴ちゃんは博士課程に進んで3年経ち、2023年春、大学院と「東大王」を同時に卒業(正しくは、大学院は「卒業」でなく「修了」という)ということである。



401:132人目の素数さん
23/12/11 23:45:57.11 LDjjScyh.net
>>377
>やっぱ使ってないや
そう
あんまり使ってないよ
ところで、昔ずっと悩んでいたのが
テンソルと行列の関係でね
一般性相対性理論の本を読むと
4次元テンソルが出てくる(4次元時空連続体)
コーシーの応力テンソルは、3次元なのだけれど
現代的なテンソル論は、ベクトルとか行列とマージされて説明されているんだ
それで、行列の発展形がテンソルかな? しかし、どうも違うと悩んでいたんだが
何年か前に、あのコーシーの応力テンソルを考えたとあって、なるほどと思った
行列とは全く異なる発想で、コーシーの応力テンソルが出てきたのだった
テンソルの方が、行列より早いみたい
なお、当時応力解析はポアソンもやっていたらしく”Poisson's ratio”にその名を残す
(参考)
URLリンク(en.wikipedia.org)
Poisson's ratio
Many typical solids have Poisson's ratios in the range of 0.2–0.3.
The ratio is named after the French mathematician and physicist Siméon Poisson.
URLリンク(ja.wikipedia.org)
シメオン・ドニ・ポアソン
生涯
ピティヴィエで生まれた。初めは父の意向で医学を志したが、不器用であって医学に関心をもたなかったので数学に転向した。1798年にエコール・ポリテクニークに入学、ラグランジュ、ラプラスらに代数学などを学ぶ。1802年にフーリエの後任としてエコール・ポリテクニーク教授に就任し、1806年まで在籍した。

402:132人目の素数さん
23/12/11 23:47:48.29 LDjjScyh.net
>>379 訂正
何年か前に、あのコーシーの応力テンソルを考えたとあって、なるほどと思った
  ↓
何年か前に、あのコーシーが応力テンソルを考えたとあって、なるほどと思った

403:132人目の素数さん
23/12/11 23:50:43.85 LDjjScyh.net
>>311 訂正
さすがに数学セミナー1週で「ガロアの理論」を語り尽くすのは無理みたいw
  ↓
さすがに数学セミナー1章で「ガロアの理論」を語り尽くすのは無理みたいw

404:East Enders
23/12/12 05:55:24.46 /D1vpNb1.net
>>377
>やっぱ使ってないや

>>379
>そう
>あんまり使ってないよ

おや?
殊勝だね どういう風の吹き回しだい? 同業君

まあ、あんまり、無理をいうのはやめにしたよ

数学は計算技法だと割り切ってる人に理論を語ってもしゃあない
マセマの「ガロア理論■キャンパス・ゼミ■」みたいな本が出るといいね
(石井俊全の本はそんな感じだから、まんざらあり得ないわけでもない)

405:East Enders
23/12/12 06:03:55.27 /D1vpNb1.net
>>379
>ところで、昔ずっと悩んでいたのがテンソルと行列の関係でね
 ほう
>一般性相対性理論の本を読むと4次元テンソルが出てくる(4次元時空連続体)
 正確にはテンソル場ね 曲率を表す量だね
>コーシーの応力テンソルは、3次元なのだけれど
 時空は4次元多様体だからね
>現代的なテンソル論は、ベクトルとか行列とマージされて説明されているんだ
 そりゃそうだろ
>それで、行列の発展形がテンソルかな? しかし、どうも違うと悩んでいたんだが
 「発展形」とはどういう意味かね?
 言葉の意味次第で然りとも否とも言えるがね

 数学科なら
「テンソルとは多重線形写像である」
 で終わり 行列もテンソルとして表せる

406:East Enders
23/12/12 06:11:15.26 /D1vpNb1.net
>>379
>何年か前に、あのコーシーの応力テンソルを考えたとあって、なるほどと思った
>行列とは全く異なる発想で、コーシーの応力テンソルが出てきたのだった
>テンソルの方が、行列より早いみたい
>なお、当時応力解析はポアソンもやっていたらしく”Poisson's ratio”にその名を残す

歴史を知ることと、概念を理解することは、直接関係ないけどね
まあ、別に歴史を知ることが、悪いといってるわけではない

ベクトルやテンソルでどんな物理的概念を表すかは、数学の範囲外
なぜテンソルで応力を表現できるかは知らんけど、そういうことならそうなんだろう

時空の曲率テンソルは、時空の各点の”時空的”応力の表現だと考えたいならそれもありだろう
そもそもアインシュタインは曲率テンソルで重力を表そうとしたわけだから
そこは物理であって数学ではないから はあそうですか、頑張ってくださいね としかいえんね

407:East Enders
23/12/12 06:15:39.86 /D1vpNb1.net
数学は数学的概念それ自体の理論
物理は自然現象の理論 その中で数学を用いているだけ

もちろん、自然現象を語るのに必要な「新しい数学」を構築することはあり得る
とはいえ、構築された「新しい数学」は、それで自然現象を語れるか否かによらず
数学理論として独立した意義を有する

したがって、やっぱり数学と物理は異なる
物理的な意味を持たないから、数学として価値がない、とはいえない
まあ、いまどき、そんなアホなイチャモンをつける奴はいない、と信じるが

408:132人目の素数さん
23/12/12 07:40:00.07 Hh8yiJws.net
>>385
>数学は数学的概念それ自体の理論
>物理は自然現象の理論 その中で数学を用いているだけ
>
>もちろん、自然現象を語るのに必要な「新しい数学」を構築することはあり得る
>とはいえ、構築された「新しい数学」は、それで自然現象を語れるか否かによらず
>数学理論として独立した意義を有する
>
>したがって、やっぱり数学と物理は異なる

・お説の通りの面はある
・一方で、数学と周辺の関連分野との相互作用は、注目しておくのが良いと思うよ
・例えば、山下真由子と 理論物理学者 立川裕二氏との共同研究>>326
 あるいは、小沢登高 「最近私の研究が、量子通信や量子コンピュータの理論的側面を扱う量子情報理論と関係していることを知りました。
そこでこの問題に取り組んだ結果、フォンノイマン因子環に対する数学的な未解決な予想が、一見まるで無関係な量子情報理論における予想と同値であることの証明に成功しました」>>328
・他にも上げれば切りが無い
 伊藤清氏の確率微分方程式が、株価の理論式として使われてノーベル賞。伊藤清氏は何もしないかったが、一気に伊藤清氏の理論は有名になった
 物理のミラー対称性は、フィールズ賞につながったが、そこに深谷先生の理論が使われた
 望月拓郎氏の3億円の受賞も、物理への応用が評価されたような気がする

(参考)
URLリンク(ja.wikipedia.org)
数学ブレイクスルー賞(Breakthrough Prize in Mathematics)- 2014年創設
各賞とも総額300万ドル授与される[1]。

URLリンク(ja.wikipedia.org)(%E5%BC%A6%E7%90%86%E8%AB%96)
ミラー対称性(mirror symmetry)はカラビ・ヤウ多様体と呼ばれる幾何学的な対象の間の関係であり、2つの カラビ・ヤウ多様体が幾何学的には全く異なっているにもかかわらず、弦理論の余剰次元としてそれらを扱うと等価となる対称性のことを言う。この場合、多様体は互いに「ミラー多様体」であると呼ばれる。

ミラー対称性はもともとは、物理学者によって発見された。数学者がミラー対称性に興味を持ち始めたのは1990年頃で、特に、フィリップ・キャンデラス(英語版)(Philip Candelas)、ゼニア・デ・ラ・オッサ(Xenia de la Ossa)、パウル・グリーン(Paul Green)、リンダ・パークス(Linda Parks)らによって、ミラー対称性を数々の方程式の解の数を数える数学の分野である数え上げ幾何学で使うことができることが示されていた。実際、キャンデラスたちは、ミラー対称性を使いカラビ・ヤウ多様体の上の有理曲線を数えることができ、長きにわたり未解決であった問題を解明できることを示した(参照項目:ミラー対称性の応用)[1]。元来のミラー対称性へのアプローチは、理論物理学者からの必ずしも数学的には厳密(mathematical rigor)ではないアイデアに基づいているにもかかわらず、数学者はミラー対称性予想のいくつかを数学的に厳密な証明に成功しつつある[2]

409:132人目の素数さん
23/12/12 07:46:36.65 Hh8yiJws.net
>>384
>歴史を知ることと、概念を理解することは、直接関係ないけどね

正確には
”歴史を知らなくても、概念を理解することは可能だが
 歴史を知ることで、その概念を深く理解することは可能だ”
が正解と思う

実際、ブルバキも抽象的な理論を補う意味だろうが、数学史を書いている
ヴェイユも、数学史を書いている(読んだけど、ムズかったw)

URLリンク(ja.wikipedia.org)
アンドレ・ヴェイユ(André Weil, 1906年5月6日 - 1998年8月6日)は、フランスの数学者で、20世紀を代表する数学者の一人である。思想家のシモーヌ・ヴェイユは妹、児童文学者のシルヴィ・ヴェイユ(フランス語版)は娘である。
数学史の著作もある。

『数論 歴史からのアプローチ』足立恒雄・三宅克哉訳、日本評論社、1987年12月。ISBN 4-535-78160-5。

ニコラ・ブルバキ『ブルバキ数学史』 上、村田全・清水達雄・杉浦光夫 翻訳、筑摩書房〈ちくま学芸文庫 フ-25-1〉、2006年3月8日。ISBN 4-480-08977-2。
ニコラ・ブルバキ『ブルバキ数学史』 下、村田全・清水達雄・杉浦光夫 翻訳、筑摩書房〈ちくま学芸文庫 フ-25-2〉、2006年3月8日。ISBN 4-480-08978-0。

410:132人目の素数さん
23/12/12 08:21:45.33 M89tY/Cb.net
>>386
>数学と周辺の関連分野との相互作用は、注目しておくのが良いと思うよ
 それが「わかる人」はね
>例えば、・・・
 3次元物体の連続体力学が
 今まで登った最高峰だという人が
 いきなり何の準備もなく
 代数トポロジーとかに「弾丸登山」
 は無謀じゃないかい?
 "ド・ラム コホモロジー"も知らんのだろう?
URLリンク(ja.wikipedia.org)

411:132人目の素数さん
23/12/12 08:22:18.60 M89tY/Cb.net
>>387
>”歴史を知らなくても、概念を理解することは可能だが
> 歴史を知ることで、その概念を深く理解することは可能だ”
”歴史を忘れることで理解できる、ということもある”
今の君には何を言ってるか分からないかもしれないが
いつか理解してもらえれるならうれしいね
ニュートン力学は何が静止してるか忘れることで本当に理解できる
つまり天動説とか地動説とかいう議論が全く無意味化される
相対性理論は何と何が同時か忘れることで本当に理解できる
つまり絶対時間という”エーテル”が全く無意味化される
あたりまえとか必要とか思ってた前提が
実はなりたたないとか不要とか気づくことが大事
自分の中の”不可侵な聖域”をなくすこと
これこそが学問の意義じゃないか
と私は思うけど、君の意見は?

412:132人目の素数さん
23/12/12 08:41:56.43 rJ70TXAE.net
横からだが、歴史的に数学基礎論は数学の基礎付けのために始まった学問だから、現代の数学をベースにした数学基礎論は循環論法だっていうキチガイが基礎論スレにいたな
現代の教科書が読めないからって歴史から入る人間は話聞いてるとだいたい頭がおかしい

413:132人目の素数さん
23/12/12 08:56:42.52 M89tY/Cb.net
>>390
実際は
「現代の数学をベースにした数学基礎論は循環論法だっていう
 スレを立てた奴が数学板にいたな」

数学基礎論「数学を使って数学の基礎を作ります」←循環論法じゃん
スレリンク(math板)

まあ、
「数学理論自身による数学理論の無矛盾性証明が信頼できるか?」
という疑問は当然あるが、それ以前に
「ある性質をもつ公理系が自身の無矛盾性証明を持つ場合
 その証明から、自身の矛盾をもつ証明が具体的に構成できる
 したがって、もし無矛盾、つまり矛盾が証明できないのであれば
 無矛盾性証明も存在しない」
(ゲーデルの不完全性定理)
ということなので、無矛盾性の確立を目的とする数学基礎論はその意味を失う

もちろん、数理論理学の定理としてゲーデルの不完全性定理は意義がある

414:132人目の素数さん
23/12/12 09:30:33.03 rJ70TXAE.net
>>391
こっちのスレね
スレリンク(math板:45番)

415:132人目の素数さん
23/12/12 09:48:22.11 fVa8inK6.net
>>392 同じ人かもな

416:132人目の素数さん
23/12/12 10


417::19:23.31 ID:948RporJ.net



418:132人目の素数さん
23/12/12 10:19:44.79 948RporJ.net
つづき
1956年、永田はデデキント整域上の代数幾何学の基礎について論文を発表する[22]。この論文の導入部で永田はシュヴァレーに対して謝辞を述べている。シュヴァレーは1954年1月に京都大学で講義を行い、永田はここから多くのアイデアを得たという。またこの論文の執筆に対しても多くの助言があったという。
1958年、グロタンディークは国際数学者会議で抽象代数多様体のコホモロジー論について講演する(論文の発表は1960年)[29]。この中でグロタンディークは、永田とシュヴァレーの研究に言及したのち[注釈 4]、「正しい定義の指針」(the principle of the right definition)はセールのFACにあると言い、任意の可換環に対するスキームの定義を現在と同じ形で述べた[30]。
現在と同じスキームの定義に誰がどのようにして至ったかについては、様々な逸話がある。グロタンディークとデュドネは、セールが代数多様体のコホモロジー論を任意の可換環に対して書き起こすことは容易であると指摘した、と言っている[31]。カルティエは、マルティノー[注釈 5]がセールに彼の理論は極大イデアルを素イデアルに置き換えても成り立つことを指摘し、そしてカルティエが現在のスキームの定義と全く同じものを提案した、と言っている[31]。セールは、スキームを発明したものはいない[31]、完全に一般的な設定で考えてもうまくいくと考えたところにグロタンディークの独創性がある、と言っている[32]。これらを踏まえた上で、スキームの定義は空気の中にあった、と McLarty (2003, p. 14) は総括している。
(引用終り)

419:132人目の素数さん
23/12/12 10:47:47.21 y5CcJSmf.net
URLリンク(i.imgur.com)


420:g



421:132人目の素数さん
23/12/12 11:13:33.28 948RporJ.net
>>394
>”歴史を忘れることで理解できる、ということもある”
>今の君には何を言ってるか分からないかもしれないが
>いつか理解してもらえれるならうれしいね
さて、逆もある
(以下文献を上げない場合もあるがご容赦)
・一例が、ゼロ(0)の概念。ギリシャ数学やキリスト教の影響で、ゼロ(0)の概念の受容がヨーロッパでは遅れたと言われる
 小数の10進位取り表記が、ずいぶん遅れた
・下記のデカルト座標系も
 何が画期的だったか?
 i)ギリシャ数学では、幾何と数論は全く別物だった(多分、分数(有理数)がベースだったからだろう)
  下記、数直線は有理数Q→実数Rへの飛躍を含んでいる
 ii)ギリシャ数学では、2乗の量(面積)と1乗の量(長さ)とは、全く別で加えるのは原則不可だった
  実際1m(メートル)と、1m^2(平方メートル)を加えてはいけないみたいなこと
  しかし、現代ではx+x^2 はありです。これで、2次関数が考えられる
・かように、従来の概念を否定するパラダイムシフトが、多々あった
 そういう目で数学史を見たら良いと思いますよ
(参考)
URLリンク(en.wikipedia.org)
デカルト座標系
(Google訳)
歴史
デカルトという形容詞は、オランダ在住中の 1637 年にこの考えを発表したフランスの数学者で哲学者 のルネ・デカルトを指します。これは、やはり三次元の研究を行っていたピエール・ド・フェルマーによって独自に発見されましたが、フェルマーはこの発見を公表しませんでした。[1]フランスの聖職者ニコール・オレムは、デカルトやフェルマーの時代よりずっと前に、デカルト座標に似た構造を使用していました。[2]
デカルトもフェルマーも治療に単一の軸を使用し、この軸を基準にして測定された可変長を持っ​​ています。[要出典]一対の軸を使用するという概念は、デカルトの『幾何学』が 1649 年にフランス ファン スホーテンとその生徒たちによってラテン語に翻訳された後、後に導入されました。これらの解説者は、デカルトの著作に含まれるアイデアを明確にしようとする際に、いくつかの概念を導入しました。[3]
デカルト座標系の発展は、アイザック ニュートンとゴットフリート ヴィルヘルム ライプニッツによる微積分の発展において基本的な役割を果たすことになります。[4]平面の 2 座標の記述は、後にベクトル空間の概念に一般化されました。[5]
デカルト以来、平面の極座標や3 次元空間の 球面座標や円筒座標など、他の多くの座標系が開発されてきました。
説明
1 次元
詳細は「数直線」を参照
1 次元空間、つまり直線のデカルト座標系を選択するには、線の点O (原点)、長さの単位、および線の向きを選択する必要があります。
選択されたデカルト系の直線は、数直線と呼ばれます。このデカルト システムを選択すると、直線と実数の間の 全単射が引き起こされます。

422:132人目の素数さん
23/12/12 11:36:33.03 948RporJ.net
>>390-391
>横からだが、歴史的に数学基礎論は数学の基礎付けのために始まった学問だから、現代の数学をベースにした数学基礎論は循環論法だっていうキチガイが基礎論スレにいたな
>「現代の数学をベースにした数学基礎論は循環論法だっていう
> スレを立てた奴が数学板にいたな」
>
>数学基礎論「数学を使って数学の基礎を作ります」←循環論法じゃん
>スレリンク(math板)
面白いけど
1)数学史をちゃんと勉強してないよね
 カントールやデデキントが、(素朴)集合論を始めた
 ところが、(素朴)集合論で「すべての集合の集合」のようなものを考えると
 パラドックスが起きる
2)そこで、数学の公理化をしようとなった(ヒルベルト)
 この数学の公理化の部分を、後世では一般に基礎論と呼ぶ
3)公理化については、ユークリッド幾何の公理的扱いがモデルになっている
 これは、ゆとり以前では、小学校でユークリッド幾何とあわせて公理的扱いを教えたものです
 点は長さも面積もたない、線は長さを持つが面積を持たない、面は面積を持つなどなど
 そうして、最後定義に使う用語は、無定義用語に行き着くのです(なので循環論法にならない)
 (無定義用語の存在は、避けられないのです)
”数学基礎論は循環論法”っていう人は、「数学の公理化」という行為が全く分かってない
それは、数学史をちゃんと勉強してないってことであり
”ゆとり”で、(”公理化”とか基礎的な知識の)インプットが不足ってことでしょ?
URLリンク(ja.wikipedia.org)
素朴集合論
パラドックス
任意の性質を用いて、制限なしに集合を構築できるという仮定は、パラドックスにつながる。一般的な例に、ラッセルのパラドックスがある。「自分自身を含まないすべての集合」で構成される集合は存在しない。したがって、素朴集合論を無矛盾なシステムとするためには、集合を構成するために使う原理に対して制限をかける必要がある。
公理的理論
公理的集合論は、どの操作がいつ許可されるかを正確に定めることを目的として、集合を理解するこれらの初期の試みに応えて開発された。

423:132人目の素数さん
23/12/12 11:43:30.88 948RporJ.net
なお、現代数学は決して特定の公理体系に直接依存していないということも
常識として、インプットしておくべきと思います(下記など)
(参考)
URLリンク(www.youtube.com)
数学基礎論が衰退したのは何故か?理由を考察
謎の数学者
2021/05/13 現役数学者が教える大学数学
@egeg8759
1 年前
勉強したことがある人が、続けるのをやめた理由を話してくれるのはとても貴重。私の中で数学基礎論との付き合い方がより明確になりました。
@hikaruibayashi9004
2 年前(編集済み)
とても勉強になりました。「『そもそもなぜこんなことを考えるんだろう?』という疑問を突き詰めていくことが真の理解には不可欠なんだ!」と私は考えがちなので、数学の基礎論への関心が近年薄まっているという話は驚きが大きかったです。いつも興味深い動画をありがとうございます。

424:132人目の素数さん
23/12/12 12:03:07.14 dMxDgkfg.net
>>394
>分かるよ、*だね
 また滑ったね 素人が
>〇は、「古い□の概念は忘れろ(理解の邪魔)」といったらしい
>いま、同じことが※で起きている。
>●氏は「古い■の概念は忘れろ(理解の邪魔)」と
 また肥溜に落ちたね 素人が

425:132人目の素数さん
23/12/12 12:06:32.83 wzujSq71.net
素人でも玄人でもいいから
2乗して項の数が減る多項式の例を
教えてほしい

426:132人目の素数さん
23/12/12 12:13:39.74 fVa8inK6.net
>>398
>カントールやデデキントが、(素朴)集合論を始めた
>ところが(素朴)集合論で「すべての集合の集合」のようなものを考えるとパラドックスが起きる
>そこで、数学の公理化をしようとなった(ヒルベルト)
>この数学の公理化の部分を、後世では一般に基礎論と呼ぶ
それ、林晋さんに「数学史をちゃんと勉強してない」ってつっこまれるパターン
まず、カントールが集合論を公理化してなかったのは確かだが
彼は「すべての集合の集合を考える」とはいってない
矛盾が見いだされたのはフレーゲの体系
そこには「性質**を満たすもの全体」を
集合とみなすような公理があったが、
そこから矛盾が導けることをラッセルが示した
ツェルメロによる集合論の公理化が上記の影響かどうかは知らない
ただ、そこで選択公理を設けてそこから整列定理を導いたので
別の騒動を引き起こしたけど
さて「数学の公理化の部分を、後世では一般に基礎論と呼ぶ」は全くのウソ
ヒルベルトは「数学の公理化」なんてブルバキみたいなざっくりしたことをいったわけではない
むしろ無矛盾性証明による具体的なプログラムを提示した それが基礎論の淵源
まあ、ゲーデルの不完全性定理により頓挫したけど
今でも証明論というものはある でも別に無矛盾性の確立のためにやってるわけではない



427:だからこれをもって「数学基礎論」というのは正しくない



428:132人目の素数さん
23/12/12 12:20:50.98 fVa8inK6.net
>>399
数学基礎論は死んだけど、集合論は生きてるよね
コーエンのフォーシングのおかげで
「集合論も群論と変わんねえし」
って示されちゃったし
「」内の意味は分かる奴だけ分かりゃいい

429:132人目の素数さん
23/12/12 13:12:22.37 948RporJ.net
>>402
>まず、カントールが集合論を公理化してなかったのは確かだが
>彼は「すべての集合の集合を考える」とはいってない
>
>矛盾が見いだされたのはフレーゲの体系
違うんだな
原理は、「自己言及のパラドックス」下記です
特定の体系の話ではない
(参考)
URLリンク(ja.wikipedia.org)
自己言及のパラドックス
自己言及のパラドックスまたは嘘つきのパラドックスとは、「この文は偽である」という構造の文を指し、自己を含めて言及しようとすると発生するパラドックスのことである。この文に古典的な二値の真理値をあてはめようとすると矛盾が生じる(パラドックス参照)。
「この文は偽である」が真なら、それは偽だということになり、偽ならばその内容は真ということになり……というように無限に連鎖する。同様に「この文は偽である」が偽なら、それは真ということになり、真ならば内容から偽ということになり……と、この場合も無限に連鎖する。
集合論におけるパラドックス (ラッセルのパラドックス)
詳細は「ラッセルのパラドックス」を参照
集合論における典型的なパラドックスは次のようなものである。これは特に、バートランド・ラッセルが議論の対象としたことで知られる(ラッセルは述語論理における同様のパラドックスについても議論している)。
まず、様々な集合を2種類に分類する。ひとつは、自分自身を要素として含むような集合で、もうひとつは、自分自身を要素として含まないような集合である。
次に、その分類で、後者に分類されるもの全てからなるような集合を想定する。つまり、この集合は、「自分自身を要素として含まないような集合の集合」ということになる。(便宜上この集合を A とする。)
このような集合 A は、果たして「自分自身を要素として含まないような集合」のひとつであるかを考えてみると、もしも自分自身を要素として含まないのであれば、 A には A が含まれないということを意味する。ところが、 A は定義により、自分自身を要素として含まない集合全てを含むはずなので、 A には A 自身が含まれていなければならないはずである。ところが、もしも A に A 自身が含まれているとすると、それは A が自分自身を含む集合の一種であるから、 A の一要素として含まれていてはいけないことになる。
以上のように、この集合は自己言及のパラドックスを引き起こすことになる。
様々な解決案
言語階層
アルフレト・タルスキ
アーサー・プライア
ソール・クリプキ
バーワイズとエチェメンディ
真矛盾主義
嘘つきのパラドックスの論理構造

430:132人目の素数さん
23/12/12 13:20:14.07 948RporJ.net
>>403
>数学基礎論は死んだけど、集合論は生きてるよね
"数学基礎論が衰退したのは何故か?理由を考察 謎の数学者"
で言っていることは
いま研究分野として"数学基礎論”で成果を上げていくのが難しいってことだと思う
"数学基礎論”自身は、ちゃんと確立されたし
集合論も同様でしょ
圏論を"数学基礎論”に入れれば、圏論はピンピン元気だと思うけど
いま、"数学基礎論”はコンピューターサイエンスに軸足を移しつつあるように思う
今どきのAI系の情報理論なども取り込んでいくんじゃないのかな?

431:132人目の素数さん
23/12/12 13:59:36.36 EFmKwHrV.net
>>404
>>矛盾が見いだされたのはフレーゲの体系
>違うんだな 特定の体系の話ではない
 数学ではなく、数学史の話なら、違わない
 ラッセルが手紙を書いた相手がフレーゲ
 内包公理を採用した集合論でももちろん同じ方法で矛盾が導けるが
 カントールが内包公理を提案した、という史実がない
 だから「数学史」として「ラッセルがカントールの集合論の矛盾を導いた」というならそれは誤り
 念押しするけど、>>398で「数学史をちゃんと勉強してないよね」といってるから
 数学としてではなく数学史の史実のみについていってるよね?

432:132人目の素数さん
23/12/12 14:09:10.15 M89tY/Cb.net
>>405
>研究分野として"数学基礎論”で成果を上げていくのが難しい
 ”数学基礎論”という言葉で、”数学の基礎づけ”について述べてる?
 それともまさかとは


433:思うけど”数理論理学もしくは集合論”について述べてる?  前者は全くそのとおり もうそんな方向で誰も論文書いてない  後者は全然見当違い 門外漢のユーチューバーが知ったかでトンチンカンなこといってるのを素人が真に受けてるだけ  数学者だからって、数学の全ての分野に通じてるわけじゃないから、専門外の事に関する発言を真に受けちゃ恥かくよ >圏論を"数学基礎論”に入れれば、圏論はピンピン元気だと思うけど  数学の基礎付けとして圏論を語る人なんているのかい?  論理とか集合論とかの拡大として圏論を持ち出す人はいるけどね  それは基礎付けとは違うよ >いま、"数学基礎論”はコンピューターサイエンスに軸足を移しつつあるように思う  それ今じゃなくて何十年も前からだよ  もしかして1945年以降はみんな今って言っちゃってる?  なんか昭和生まれのおじい様が自分が生きてきた時代をすべて今って言っちゃうみたいな >今どきのAI系の情報理論なども取り込んでいくんじゃないのかな?  今のAIは、論理とは直接関係ない、という基本的なことはご存じ?  第五世代コンピュータの頃のまま語ってると見当違いなんで



434:132人目の素数さん
23/12/12 14:18:09.92 M89tY/Cb.net
そもそも「数理論理学」を「数学基礎論」って言っちゃう時点で
20世紀(というか1960年代のコーエン出現以前)から
全然アップデートされてない感じ

435:132人目の素数さん
23/12/12 21:06:56.17 Hh8yiJws.net
>>406
>>>矛盾が見いだされたのはフレーゲの体系
>>違うんだな 特定の体系の話ではない
> 数学ではなく、数学史の話なら、違わない
> ラッセルが手紙を書いた相手がフレーゲ
・出ました、お得意の論点ずらし、ストローマン
 ”>>402
 >まず、カントールが集合論を公理化してなかったのは確かだが
 >彼は「すべての集合の集合を考える」とはいってない
 >
 >矛盾が見いだされたのはフレーゲの体系”
 と言っていたのが
 いつの間にか数学史の話で、「ラッセルが手紙を書いた相手がフレーゲ」??
・いやいや、私はそういう論点ずらし、ストローマンをしないように心がけている
 ロジックを貫徹するクセ(習慣)をつけておかないと
 もし 論点ずらし、ストローマンのクセ(習慣)がつくと、数学的思考ができなくなると思うんだ

436:132人目の素数さん
23/12/12 21:16:25.49 /D1vpNb1.net
>>409
>「ラッセルが手紙を書いた相手がフレーゲ」??
 これは事実です
 URLリンク(russell-j.com)
>論点ずらし
 >>398で「数学史をちゃんと勉強してないよね」と書いたのは誰でしたか?
 あいかわらずみっともないですね ひろゆきIIさん

437:132人目の素数さん
23/12/12 21:46:56.14 Hh8yiJws.net
>>407
>後者は全然見当違い 門外漢のユーチューバーが知ったかでトンチンカンなこといってるのを素人が真に受けてるだけ
私は、あなたの妄言より、下記の謎の数学者のいうことを信じるw
彼は基礎論素人かもしれないが、あなたは”ド素人”ですww
「数学基礎論が衰退したのは何故か?理由を考察 謎の数学者 2021/05/13」 URLリンク(www.youtube.com)
>>圏論を"数学基礎論”に入れれば、圏論はピンピン元気だと思うけど
> 数学の基礎付けとして圏論を語る人なんているのかい?
グロタンディーク関連で、”「圏論」をベースに数学原論を書き直すべき”だって
あと、圏論と構造主義 深山洋平 北大 2012-12-26など(下記)
URLリンク(books.rakuten.co.jp)
ブルバキとグロタンディーク[アミーア・D.アクゼル]
評価5.00投稿日:2012年07月29日
ブルバキの結成から衰退までを丁寧に記述した数学史の本。ブルバキの功罪について、著者の考えが明確に示されており興味深い。ブルバキの功績は、言うまでもなく、数学を「公理」と「構造」に基づいた厳密な言語体系として再構成し、それらを「数学原論」として著したことである。
著者は、ブルバキの最盛期にメンバーであった、アレクサンドル・グロタンディークの「圏論」をベースに数学原論を書き直すべきだったと主張している。
グロタンディークはブルバキの第3期メンバーであり、数学原論を圏論ベースで書き直すのは時期的に無理があるし、圏論みたいな過度に抽象的な道具を使って当初の目的(学生や一般人への数学の啓蒙)を達成できたかどうかは甚だ疑問である。グロタンディーク自身、ブルバキの活動を「巨大な百科事典を作る試みであり、新たな数学理論を切り開くのには役立たない」と批判し、ブルバキを抜けてしまうので、結局、ブルバキとグロタンディークは互いの価値観を受け入れられなかったのだと思う。
URLリンク(eprints.lib.hokudai.ac.jp)
圏論と構造主義 深山洋平 北大 2012-12-26
2マックレーンによる数学の基礎付け:トポス理論
3アウディの数学的構造主義
彼は,哲学的構造主義の研究が進められる一方で,彼が考える意味での数学的構造主義の実際の方法,すなわち圏論を用いる方法が無視されていると指摘する。

438:132人目の素数さん
23/12/12 21:53:12.74 Hh8yiJws.net
>>408
>そもそも「数理論理学」を「数学基礎論」って言っちゃう時点で
>20世紀(というか1960年代のコーエン出現以前)から
>全然アップデートされてない感じ
・ネーミングで、中身がすぐ変わるはずもない
 「数理論理学」の定義は?
 「数学基礎論」の定義は?
 名前付けのゴマカシかい?
・永田の本:可換体、体
 雪江の本:体、可除環
 どう名前をつけようと
 問題は書いている数学の内容のはずだ

439:132人目の素数さん
23/12/12 22:22:35.31 wzujSq71.net
書き方の問題

440:132人目の素数さん
23/12/12 23:05:24.40 4V2Ga62w.net
>>411
マックレーンの「形式と機能」を圏論による解析力学の入門書として読んでしまった俺はやはりニューマスの申し子ではあったのだろうなとは思うわマジで。

441:132人目の素数さん
23/12/12 23:49:57.46 Hh8yiJws.net
>>414
>マックレーンの「形式と機能」を圏論による解析力学の入門書として読んでしまった俺はやはりニューマスの申し子ではあったのだろうなとは思うわマジで。
ありがと
ああ、あの本ね
令名を噂で聞いて、図書館で取り寄せて貰って
読んだけど
といっても、斜め読みだけど
おぼろげに記憶を辿ると
じっくり読めば面白いそうと思った
が、残念ながら、そこまで行かなかった(あまり読めないうちに期限が来た)
なので、あれ読めたら凄いと思うわ
まじで

442:132人目の素数さん
23/12/12 23:59:22.24 Hh8yiJws.net
>>413
>書き方の問題
ありがとう
これは、御大か
なるほど、碁は手順が大事という
数学も、どういう順番で書くかで
分かり易くもなり、分かりにくくもなり
手順前後に気をつけましょうってことか
永田先生の本ね。いまなら読めるかも。書店でチラ見しておけば良かったな

443:132人目の素数さん
23/12/13 06:50:17.18 s62ezuyd.net
>>411
>私は、・・・より、・・・のいうことを信じる

 つまり、中身が理解できないから
 言ってる人の肩書を見て全てを賭ける、と

 典型的な🐎🦌の態度ですなぁ
 詐欺師にカモられまっせ

444:132人目の素数さん
23/12/13 06:53:43.77 s62ezuyd.net
>>411
>グロタンディーク関連で、”「圏論」をベースに数学原論を書き直すべき”だって

 どうぞ、ご随意に
 数学原論は数学の本 数理論理学の本ではないから
 ちなみに数理論理学の圏論によるアプローチはすでに行われまくってます
 まあ、素人さんは全く知らんでしょうがね 
 あ、ググらんでいいよ 知ってる人はみな知ってるからコピペされても鬱陶しいだけ

445:132人目の素数さん
23/12/13 06:59:30.79 s62ezuyd.net
>>412
>・ネーミングで、中身がすぐ変わるはずもない
> 「数理論理学」の定義は?
> 「数学基礎論」の定義は?

 誰に尋ねてんの?
 「ゲーデルの不完全性定理で数学基礎論は死んだ」と言ってる人は
 数学基礎論を「数学の基礎づけのための行為」といってますよね
 日本語読めてない?
 で、ゲーデル以後は数学を用いた論理学の研究としての
 「数理論理学」だということですよね
 で、それを完全に決定づけたのがコーエンのフォーシングによる
 一般連続体仮説と選択公理の決定不能姓
 要するに集合論のモデルは一つではなく、無数にあるということ
 群のモデルが無数にあるのと同じだよね そういう意味で
 集合論は群論同様只の数学に成り果てた

 エポックになる発見の時期の前後で分野の中身はがらっと変わるんだよ
 君は素人のままだから死ぬまで理解できないだろうけど

446:132人目の素数さん
23/12/13 07:02:16.96 s62ezuyd.net



447:マックレーンは数学者としては有能だが、集合論(というか無限)には理解がない 圏論がでてこようが、無限基数の研究の意義が失われるわけではない ・・・という意味で、頭の固いジジイ



448:132人目の素数さん
23/12/13 07:40:00.38 b464xS7y.net
>>416
>なるほど、碁は手順が大事という
>数学も、どういう順番で書くかで
>分かり易くもなり、分かりにくくもなり
>手順前後に気をつけましょうってことか
数学書の読み方、勉強法にも、手順前後はありそう
早く、全体像を掴むこと
下記を再録しておきます
ある定義、定理が、ストンと腹に落ちるように分かるには
その定義、定理が、どう使われていて、全体の理論の中での位置づけが分からないとそうならない
そうしないと、下記の”わんこら”さんになってしまうのです
全体像を掴むには、部分の理解が進まないとダメなのだが
この矛盾を突破するには、とにかく一度はその本を全部読まないと
途中で止まってしまってはいけないと思う
もちろん、写経や要点をノートに纏めることは、否定するものではありません
(参考)
 >>131より再録
URLリンク(researchmap.jp)
竹山 美宏
数学書の読み方について
(4) 命題などの証明も、一文一文、ていねいに写し、一文ごとに「なぜそうなのか?」を確認する。
ここで絶対にやってはいけないことは、
自分をごまかして「なんとなく正しそうだし良いか」と納得してしまうことです。
もし議論の展開が理解できないのなら、まず、命題の仮定をもう一度見直してみます。
そして、前の方を読み直したり、ちょっと先の方を読んでみたりして、じっくり考えましょう。
こういう読み方をしてると、本を読むのにとてつもない時間がかかると思うでしょう。
それで良いのです。普通の数学者であれば誰でも、
「何時間も本と格闘して数行しか進まなかった」という経験をしていると思います。
(引用終り)
・この勉強法の危険なところは、下記 わんこらさんのようになってしまうところ
・そもそも、その数学書一冊が それほど時間を掛ける価値があるのかどうか? その見極めをするのが先決
・次に、自分のレベルに合っているかどうか? あまりに本のレベルが高いと、この勉強法では届かず泥沼の可能性がある
・下記のわんこらチャンネルにある通りで、先に進まないと分からないところが多々あるはず。その視点も抜けているのが危険
(参考)
URLリンク(www.youtube.com)
僕がたどり着いた数学の勉強の仕方…わんこら式数学の勉強法はこうやって生まれた
わんこらチャンネル 2020/05/30
留年繰り返して7年で大学卒業した後
ニートになった僕ですが
そんな僕が挫折を繰り返してきた歴史と、たどり着いた数学の勉強の仕方について動画にしました
この勉強法がわんこら式と呼ばれるようになりました
大学の数学の専門書、解析入門1を使って
数学の勉強法について話します
色々な人の参考になれば嬉しいです
@user-up1tm3hq1x
2 年前
自分も元数学科生で同じような経験したのでめっちゃわかります笑!自分は厳密性に拘りすぎて数学基礎論の沼にハマって1回生の単位が壊滅的でした笑!2回生以降はすべての拘りを捨ててひたすら単位のためだけの勉強をし続けた結果なんとか卒業出来ましたがかなり苦労しました!

449:132人目の素数さん
23/12/13 07:48:42.71 b464xS7y.net
>>420
>マックレーンは数学者としては有能だが、集合論(というか無限)には理解がない
>圏論がでてこようが
下記の”圏論と集合論 渕野昌 23年1月”のご一読を、きみに勧める
なお、私は”現代思想2020年現代思想7月号「特集=圏論」


450:”を買って読んだ (参考) https://fuchino.ddo.jp/misc/category-vers-sets-2020-x.pdf 圏論と集合論 渕野昌 23年1月 以下の文章は、現代思想2020年現代思想7月号「特集=圏論」に寄稿した論説の拡張版である。 雑誌掲載版では紙数の制限などのために削除した部分も復活させている。 また、投稿後/校正後の加筆訂正も含まれる。 このテキストの最新版は、https://fuchino.ddo.jp/misc/category-vers-sets-2020-x.pdfとしてdownloadすることができる



451:132人目の素数さん
23/12/13 07:52:56.02 KH7+KBnt.net
>>421
全く数学理解出来てない奴のおすすめとかwww
何の理解も出来ない能無しコピペ野郎は自分で専用スレ一つだけ立ててそこから出てくんなよ

452:132人目の素数さん
23/12/13 08:04:24.27 b464xS7y.net
>>419
> 「ゲーデルの不完全性定理で数学基礎論は死んだ」と言ってる人は
> 数学基礎論を「数学の基礎づけのための行為」といってますよね
> で、ゲーデル以後は数学を用いた論理学の研究としての
> 「数理論理学」だということですよね
そんなことは、ないと思うよ
ゲーデルの研究は、当時1階述語論理ベースだった
しかし、人間は1階述語論理ベースでは数学を考えていない
高階述語論理ベースの基礎論は、まだまだ研究余地あるだろう
例えば、下記逆数学(2階述語論理)
あるいは、高階述語論理の一つの候補が、圏論です
(参考)
URLリンク(ja.wikipedia.org)
逆数学とは、数学の定理の証明に必要な公理を決定しようとする数理論理学のプログラムである。簡単に言えば、通常の数学が公理から定理を導くのとは逆に、「定理から公理を証明する」手法を用いることが特徴である。
逆数学は大抵の場合、2階算術について実行され、定理が構成的解析と証明論に動機付けられた2階算術の部分体系のうち、どれに対応するのかを研究する。 2階算術を使うことで、再帰理論からの多くの技術も利用できる。実際、逆数学の結果の多くは、計算可能性解析学の結果を反映している。
逆数学は、Harvey Friedman (1975, 1976)によってはじめて言及された。基本文献は(Simpson 2009)を参照。
URLリンク(www.)アマゾン
圏論による論理学―高階論理とトポス 単行本 – 2007/12/18
清水 義夫 (著)

453:132人目の素数さん
23/12/13 08:13:58.57 b464xS7y.net
>>423
>全く数学理解出来てない奴のおすすめとかwww
>何の理解も出来ない能無しコピペ野郎は自分で専用スレ一つだけ立ててそこから出てくんなよ
出ましたね、得意の論点ずらし、ストローマン
ロジックで不利になると、すぐ個人攻撃に走る
それやっていると、ロジックの貫徹の耐力が落ちて、数学の能力落ちるよ

454:132人目の素数さん
23/12/13 08:17:56.55 lJrt93oO.net
>>421
>早く、全体像を掴むこと
>ストンと腹に落ちるように分かるには
>どう使われていて、全体の中での位置づけが分からないとそうならない
>そうしないと、”わんこら”さんになってしまうのです
使い方だけ分かればいい
位置づけだけ分かればいい
早く分かればいい
そういう人は数学科じゃなく工学部にいったらいい、ってことか
”わんこら”は入る学科を間違った さっさと気づいて転科しろってことね
>時間を掛ける価値があるのかどうか?
>その見極めをするのが先決
>自分のレベルに合っているかどうか?
>あまりに本のレベルが高いと、泥沼の可能性がある
要するに自分のレベルを心得て
「マセマ」レベルの本を探して読め
ってことですな
ガロア理論でいうと矢ヶ部か石井俊全か
うん、枯れた理論ならそういう本が出る筈だからね
「わかるガロア理論」みたいな
そのうち「わかるコホモロジー」も出るかもね
期は熟している

455:132人目の素数さん
23/12/13 08:24:16.75 idXlNJQT.net
>>422
>”圏論と集合論 渕野昌 23年1月”のご一読を、きみに勧める
その文章では
「数学の基礎は集合論でなく、カテゴリー論である」
という発言が「痛い」と書いてあるが、君、意味わかってるか?

456:132人目の素数さん
23/12/13 08:37:35.51 lJrt93oO.net
>>424
>そんなことは、ないと思うよ
 の「そんなこと」はどんなこと?まさか
 「ゲーデルの不完全性定理で数学基礎論は死んだ」
 のこと?
 つまり「数学の基礎付け問題はまだ生きている!」と?
 おやおや、Before Cohenどころか、Before Goedelな人ですか?
>ゲーデルの研究は、当時1階述語論理ベースだった
>しかし、人間は1階述語論理ベースでは数学を考えていない
 どこから一階論理が出てきた?
 ゲーデルの不完全性定理は自然数論の定理だよ 分かってる? 
>高階述語論理ベースの基礎論は、まだまだ研究余地あるだろう
>例えば、下記逆数学(2階述語論理)
>あるいは、高階述語論理の一つの候補が、圏論です
 高階論理に何を期待している?
 もしかして「唯一無二のモデルを持つ完全な理論」かい?
 まいったな、defeat Skolemな人ですか?
レーヴェンハイム–スコーレムの定理
URLリンク(ja.wikipedia.org)
「レーヴェンハイム–スコーレムの定理(英: Löwenheim–Skolem theorem)とは、
 可算な一階の理論が無限モデルを持つとき、
 全ての無限濃度 κ について大きさ κ のモデルを持つ、
 という数理論理学の定理である。
 そこから、一階の理論はその無限モデルの濃度を制御できない、
 そして無限モデルを持つ一階の理論は
 ”同型の違いを除いてちょうど1つのモデルを持つ”
 ようなことはない、という結論が得られる。」

457:132人目の素数さん
23/12/13 08:45:38.77 hjPsllD5.net
世の中には
「相対論は間違ってる」(相ま)
「非ユークリッド幾何は間違ってる」(非ユま)
な人がいるのは知ってたが、今度は
「ゲーデルの不完全性定理は間違ってる」(ゲーま)
ですか
「不完全性定理は一階論理上の体系だから成立するのであって高階論理上では成立しない」(ドヤぁ)
いやあのね一階とか高階とかじゃなく、一階論理上の自然数論を含む公理系でも完全にはできますよ
ただそのような公理系では、何が公理であるかを人が分かるように明確に定義することは不可能ですけどね
(つまり「帰納的公理化可能」ではない)
やっぱり前提をうっかり読み落とす粗雑な人に数学は無理ですね

458:132人目の素数さん
23/12/13 08:52:48.65 Wk0uTNeF.net
もしかしてガロア理論に食いついた理由と高階論理に食いついた理由は同じ?
「ぐぬぬ、たしかに任意の代数方程式はべき根だけでは解けぬ・・・
 しかし、今やガロア理論がある!(ガロア群を使えば解けるかもしれない)」
「ぐぬぬ、確かに一階論理上の自然数論では証明も反証もできない命題がある 特に自身の無矛盾性はそうだ
 しかし、今や高階論理がある!(高階論理を使えばどんな命題も決定可能で、当然自身の無矛盾性も証明できるかもしれない)」
「角の三等分屋」「円積屋」「現代のトマス・ホッブス」でしたか
ジョン・ウォリス役を買って出る人がわらわら出てきそうな悪寒

459:132人目の素数さん
23/12/13 10:59:24.23 BJtZkva3.net
>>428-430
> どこから一階論理が出てきた?
> ゲーデルの不完全性定理は自然数論の定理だよ 分かってる? 

いい質問ですね
その答えは下記です
1)一階述語論理は、単純で扱いやすい。基礎論向きだが、表現力に問題あり
2)「近年、二階述語論理は一種の回復の途上にある」下記
 (二階述語論理の問題点をおさえて、使える論理を作ろうと。「計算複雑性理論への応用」があるらしい)

なお、私見だが普通人は数学を、一階述語論理そのものでは考えていないと思う
ただ、論文を書くときは、一階述語論理を主に使うのだが、しかし厳密な一階述語論理に縛られない
グロタンディークは、それじゃない? 「おれ、一階述語論理には縛られないぞ」じゃないかな?

(参考)
URLリンク(ja.wikipedia.org)
一階述語論理(英: first-order predicate logic)
本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細はそれぞれの記事を参照。

一階述語論理の表現力
一階述語論理は、数学のほぼ全領域を形式化するのに十分な表現力を持っている。実際、現代の標準的な集合論の公理系 ZFC は一階述語論理を用いて形式化されており、数学の大


460:部分はそのように形式化された ZFC の中で行うことができる。すなわち、数学の命題は一階述語論理の論理式によって記述することができ、そのように論理式で記述された数学の定理には ZFC の公理からの形式的証明 (formal proof) が存在する。このことが一階述語論理が重要視される理由の一つである。この他にペアノ算術のように単独で形式化する理論もある。 形式的証明 命題論理においては、論理公理 (logical axiom) と呼ぶ論理式の集合と、ある論理式たちから新たな論理式を導出する規則(推論規則)を導入し、論理公理から推論規則の有限回の適用によって得られる論理式全体とトートロジー全体が一致するようにすることができる(命題論理の健全性と完全性)。一階述語論理においても、適切に論理公理と推論規則を導入することで、論理公理から推論規則を使って導出される論理式全体と恒真論理式全体が一致するようにできる。 健全性と完全性 古典一階述語論理は健全かつ完全である つづく



461:132人目の素数さん
23/12/13 11:00:46.58 BJtZkva3.net
つづき
他の論理との比較
・型つき一階述語論理は変項や項に型または種を導入したものである。型の個数が有限個であれば普通の一階述語論理と大きな違いはなく、有限個の単項述語で型を記述し、いくつかの公理を追加すればよい。真理値として Ω という特殊な型を持つ場合があるが、その場合の論理式は Ω 型の項となる。
・二階述語論理は部分集合および関係、すなわち全ての述語の量化を許すものである。
・高階述語論理は述語を引数とする述語など、さらに一般化したものの量化を許す。
こうした論理の多くは、一階述語論理の何らかの拡張と言える。
URLリンク(ja.wikipedia.org)
二階述語論理(英: second-order predicate logic)
二階論理の表現能力
二階述語論理は一階述語論理よりも表現能力が高い。
歴史と論争
フレーゲは量化の種によって異なる変項を使っていたが、彼には2種類の異なる論理を扱っているという認識はなかった。ラッセルのパラドックスによって、その体系に問題があることが明らかとなった。論理学者らは問題を解決すべく、フレーゲの論理に制限を加える各種方法を検討し、それが一階述語論理となった。一階述語論理では、集合や属性は量化できないことになった。このような論理の階層化がこのころ初めてなされるようになった。
一階述語論理を使うと、集合論を公理的体系として形式化できることがわかり(完全性の問題はあるが、ラッセルのパラドックスほど悪いことではない)、公理的集合論が生まれ、集合は数学の基盤となった。算術、メレオロジー、その他の様々な論理的理論が一階述語論理の範囲内で公理的に定式化でき、ゲーデルやスコーレムが一階述語論理に固執したこともあって、二階や高階の述語論理はほとんど省みられなかった。
近年、二階述語論理は一種の回復の途上にある。この傾向をもたらしたのは George Boolos による二階の量化の解釈であり、彼は一階の量化と同じドメインでの複数形の量化として二階の量化を解釈した。Boolos はさらに一階述語論理では記述できない文を例に挙げ、完全な二階述語論理の量化でのみそれらを表現可能であるとした。しかし、その一部は二階述語論理を持ち出すまでもなく、一階述語論理に若干の拡張を加えるだけで表現可能である。
計算複雑性理論への応用
有限な構造についての二階述語論理の各種形式の表現能力は、計算複雑性理論と密接に関係している。記述計算量の研究では、複雑性クラスを説明するのにそれに属する言語を表現できる論理体系の能力で表す。そのため、二階述語論理を前提として次のような複雑性クラスを説明できる
(引用終り)
以上

462:132人目の素数さん
23/12/13 11:22:07.20 BJtZkva3.net
>>427
>>”圏論と集合論 渕野昌 23年1月”のご一読を、きみに勧める
>その文章では
>「数学の基礎は集合論でなく、カテゴリー論である」
>という発言が「痛い」と書いてあるが、君、意味わかってるか?
良いところに気づいたね(そうなのです、渕野先生は集合論養護派です)
それに対する答えは、下記がよく纏まっていると思う
(参考)
URLリンク(martbm.)はてなブログ.com/entry/20170723/1500777080
martingale & Brownian


463:motion 2017-07-23 ZFCの圏論での「代替」には意味があるのか? ご存知のように、数学の「基礎」はカントールによって危機に陥れられた。つまり、(素朴)集合論によって。あらゆる集合を含む集合は、自分自身を含むだろうか? この答えは含むと言っても矛盾だし、含まないと言っても矛盾。正解は「それ」は「集合ではない」というものであった。では、なにが集合なのだろう? そこから、公理的集合論は始まる。 バートランドラッセルが提案した「プリンキピア・マセマティカ」は、上記のパラドックスに「直接」、パッチを当てる、という意味では、素直な発想だったと言えるであろう。コンピュータの世界では今では一般的になった「型」という考えを使ってこの問題にアプローチする方法であったわけだが、興味深いのは、この頃の「哲学者」はまだ、真面目に「数学」をやっていた、ということであろう。 しかし、この問題はそれ以降はより、エレガントに議論されるようになる。つまり、数学基礎論(=論理学)と、公理的集合論として。しかし、そこで問題となったのは「後者」であった。なぜ、公理的集合論が問題なのか? それは、一言で言えば、この「公理系」が「直感的」ではないことなのだ。 昔から知られている結果ではあるが、おもしろいアプローチが知られている。それが、 カテゴリー(圏論) である。つい最近、以下の本を読んでいたら、第3章が「集合論について」となっている。 ベーシック圏論 普遍性からの速習コース 作者: Tom Leinster,斎藤恭司,土岡俊介 出版社/メーカー: 丸善出版 発売日: 2017/01/29 ちなみに、最後のZFCとの相等性については、以下の論文で議論されていて、 Gerhard Osius. Categorical set theory: A characterization of the category of sets. (1974) Categorical set theory: A characterization of the category of sets - ScienceDirect http://www.sciencedirect.com/science/article/pii/0022404974900322 また、以下の教科書では、上記の圏論的な枠組みの中で、実数の構成まで記述されている。 S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. (1994) Sheaves in Geometry and Logic http://atondwal.org/Sheaves_in_Geometry_and_Logic__MacLane_Moerdijk.pdf つまり、この公理系が魅力的なのは実際にその主張内容が、「私たちに直感的に理解可能なもの」しかないが、他方において、ZFCの弱い主張と解釈できるとするなら、これを 数学の「基礎」 とすることは、どこまで可能なのか、ということになる



464:132人目の素数さん
23/12/13 12:00:22.65 Wk0uTNeF.net
>>431
>>どこから一階論理が出てきた?
>>ゲーデルの不完全性定理は自然数論の定理だよ 分かってる?
>その答えは下記です
>一階述語論理は、単純で扱いやすい。基礎論向きだが、表現力に問題あり
>「近年、二階述語論理は一種の回復の途上にある」
>(二階述語論理の問題点をおさえて、使える論理を作ろうと。「計算複雑性理論への応用」があるらしい)

上記の答えは
「どこから一階論理が出てきた?」に対するもので、
「ゲーデルの不完全性定理は自然数論の定理だよ 分かってる?」に対しては沈黙してるので
「全く分かってませんでしたが、悔しいので認めたくありません!」ということでいいかい?

いい加減、口を慎むことを覚えたほうがいいんじゃない?
なんでもかんでも知ったかぶってしゃべれば他人にマウントできるなんて
ひろゆきみたいな甘っちょろい精神は通用しないって気づいたほうがいいよ

465:132人目の素数さん
23/12/13 12:07:18.50 FhmmBUk/.net
>>433
なんか全然答えになってないものを「纏まってる」といってる時点で
君、なんもわかってないよね?

たとえばラッセルのパラドックスを圏論でどう解決するの?
少なくともその質問の答えがここにない時点で、
君がそのHPをコピペしたというチョイスは大失敗だね

466:132人目の素数さん
23/12/13 12:17:33.21 BJtZkva3.net
>>420
>マックレーンは数学者としては有能だが、集合論(というか無限)には理解がない
>圏論がでてこようが、無限基数の研究の意義が失われるわけではない

・集合論が必要とされた背景に、カントールの無限集合論があるのは事実だが
・一方で、デデキントに代表される 抽象代数学の集合論がある
(例 理想数をイデアルと考える(環の部分集合)。他にも、ガロア理論を拡大体とガロア群との対応と解するなど)

ちなみに、デデキントの切断も、実数を有理数の集合を使って定義する思想
(それはコーシー列によるのと同値)
が、先進的だと足立先生は、どこかで書いていた

要するに、抽象代数学からの要請としても
集合論は簡単に捨てられないのです

(参考)
URLリンク(www2.tsuda.ac.jp)
デデキントの算術と再帰性定理 足立恒雄 第22回数学史シンポジウム(2011.10.29〜30)  所報 33

デデキントは算術を厳密に構成するために集合論を創始した.本稿では名著『数とは何
か,そしてまた何であるべきか』 (1887) における算術の基礎付けを現代的な見地から整
理して紹介する

URLリンク(repository.kulib.kyoto-u.ac.jp)
デデキントの数学思想 (数学史の研究)
足立, 恒雄 2014 数理解析研究所 講究録

467:132人目の素数さん
23/12/13 13:16:25.77 Oe8E14n4.net
>>436
なんか意味ありげなこといおうとしたが
結局意味不明な戯言しかいえなかった
って感じだな

468:132人目の素数さん
23/12/13 13:49:48.68 BJtZkva3.net
>>435
>たとえばラッセルのパラドックスを圏論でどう解決するの?
それは、下記ですね
1)パラドックスをめぐる立場は、大きく論理主義、直観主義、形式主義の3つに分けられる
2)ブラウワー 直観主義 排中律や二重否定除去、数学的構成主義
3)圏論「圏論的論理学は、直観主義的論理のために型理論に基づいて定義された」
です
圏論 Steve Awodeyにも、ちょっと書いてあったよ
(参考)
URLリンク(ja.wikipedia.org)
数学基礎論
歴史
19世紀末に、ゲオルク・カントルにより、集合が考えられた。集合にもとづいた数学の再整理は大きな成果を生み、数学において欠くべからざる道具となってきた。一方、バートランド・ラッセルは、素朴な集合の取り扱い(内包公理)により「自分自身を要素としない集合全体の”集まり”」も集合とされるが、左記の集合は、それ自身を要素としない時、その時に限り自身を要素とするという矛盾を引き起こすことをラッセルのパラドックスとして指摘した。ここに、数学の基礎付けの問題が発生した。
パラドックスをめぐる立場は、大きく論理主義、直観主義、形式主義の3つに分けられる。
直観主義は、数学的な対象や真理が、精神活動によって直接とらえられるものとする立場で、ブラウワーが提唱した。彼は数学における構成的方法を重視したが、そのため排中律の無制限な使用が不当であると非難した。
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6%E3%81%AE%E5%93%B2%E5%AD%A6)
直観主義 (数学の哲学)
来歴と評価
これに類する主張は、カントールの集合論に対抗する形でクロネッカーやポアンカレによってもなされていたが、最も明確に表明したのはオランダの位相幾何学者ブラウワーである。ブラウワーの立場に対してポアンカレらの立場は前直観主義と言われることがある。
ブラウワーの主張は感覚的で分かりにくかったが、その後ハイティング等によって整備され、結果的には古典論理から排中律を除いた形で形式化されたものが今日、直観主義論理として受け入れられている。 現代では直観主義論理は、数学の証明は全�



次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch