純粋・応用数学・数学隣接分野(含むガロア理論)17at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)17 - 暇つぶし2ch455:132人目の素数さん
23/11/26 13:15:11.38 EtUXTn+n.net
つづき
1.1.1.3 19世紀前半~ハミルトンの同時代人
これだけの人々がベクトル的なものを考えたということは、当時の時流としてベクトル的なものが発明される機運があったのだと言える。この中ではグラスマン(Grassmann)がとくに重要なので、グラスマンとそれに関連したコーシー(Cauchy)については、項を改めて述べる。
1.1.1.4グラスマンとコーシーグラスマン(HermannG¨unterGrassmann,1809–1877)は、後から見れば、ハミルトンに比肩するような業績を上げているのだが、同時代人にはあまり評価されず、後のベクトル解析への影響は歴史的にはあまりなかった。しかし、以下に見るように、グラスマンは、ほぼ現代のn次元ベクトル空間と同じものを作り上げている。
コーシー(AugustinCauchy,1789-1857)には、グラスマンは1847年に自著の『線型拡大の理論』を贈っている。その後の1853年にコーシーは「代数的な鍵について」という論文を出している。これはすでにグラスマンが書いていたアイディアに似ていて、外積を利用して代数方程式を解く方法であった。
URLリンク(ja.wikipedia.org)
応力テンソル
応力テンソルは、応力ベクトルの定め方の違いから、真応力テンソル・コーシー応力テンソル、公称応力テンソル・第1パイオラ・キルヒホッフ応力テンソル、第2パイオラ・キルヒホッフ応力テンソルの3種類が定義されておりいずれも(行列の形式で記述できる)2階のテンソルとなる。ただし、これらの応力テンソルに違いが生じるのは有限変形理論に基づいて物体の運動を記述した場合であり、材料力学や応用力学で多用されている微小変位・微小変形の仮定の下では、これらの応力テンソルはすべて真応力テンソルに一致する。
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch