スレタイ 箱入り無数目を語る部屋14at MATH
スレタイ 箱入り無数目を語る部屋14 - 暇つぶし2ch2:132人目の素数さん
23/10/07 20:20:41.94 4kGNvCC4.net
つづき

mathoverflowは時枝類似で
・Denis質問でも、もともと”but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”
 となっています。Denisの経歴を見ると、彼は欧州の研究所勤務で、other peopleは研究所の確率に詳しい人でしょう
・Pruss氏とHuynh氏とは、経歴を見ると、数学DRです。両者とも、このパズル(=riddle)は、可測性が保証されていないと回答しています

URLリンク(www.ma.huji.ac.il)
Sergiu Hart
URLリンク(www.ma.huji.ac.il)
Some nice puzzles:
URLリンク(www.ma.huji.ac.il)
Choice Games November 4, 2013
P2
Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing
the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively.

Sergiu Hart氏は、ちゃんと”シャレ”が分かっている(関西人かもw)
Some nice puzzles Choice Games と、”おちゃらけ”であることを示している
かつ、”P2 Remark.”で当てられないと暗示している
また、”A similar result, but now without using the Axiom of Choice.GAME2”
で、選択公理なしで同じことが成り立つから、”選択公理”は、単なる目くらましってことも暗示している

つづく

3:132人目の素数さん
23/10/07 20:21:04.99 4kGNvCC4.net
つづき

だめなのは、時枝記事だ。まあ、題名はおちゃらけだが、もっとはっきり、数学パズルとした方がよかったろう
非可測で、ヴィタリに言及しているのが、ミスリードだ
Hart氏の”A similar result, but now without using the Axiom of Choice.GAME2”のように、選択公理不使用のGAME2があるから、
ソロベイの定理(下記 wikipedia ご参照)から、ヴィタリのような非可測は否定される
conglomerabilityか、あるいは総和ないし積分が発散する非正規な分布により、可測性が保証されないと考えるべき
時枝氏は、確率変数の無限族の独立性が理解できていないのも痛いね

URLリンク(ja.wikipedia.org)
ヴィタリ集合
ヴィタリ集合が存在し、それらの存在は選択公理の仮定の下で示される。1970年にロバート・ソロヴェイ(英語版)は、到達不能基数の存在を仮定することにより、全ての実数の集合がルベーグ可測となるような(選択公理を除いた)ツェルメロ・フレンケル集合論のモデル�


4:\築した[2]。 (引用終り) つづく



5:132人目の素数さん
23/10/07 20:21:28.30 4kGNvCC4.net
つづき

(完全勝利宣言!w)(^^
スレリンク(math板:767番) (775の修正を追加済み)
>>701-702 補足説明
 >>760にも書いたが、
” a)確率上、開けた箱と開けてない箱とは、扱いが違う”>>701
をベースに、時枝記事>>1のトリックを、うまく説明できると思う

1)いま、時枝記事のように
 問題の列を100列に並べる
 1~100列 のいずれか、k列を選ぶ(1<=k<=100)
 k以外の列を開け、99列の決定番号の最大値をdmax99 とする
 k列は未開封なので、確率変数のままだ
 なので、k列の決定番号をXdkと書く
2)もし、Xdk<=dmax99 となれば、dmax99+1以降の箱を開けて
 k列の属する同値類を知り、代表列を知り、dmax99番目の箱の数を参照して
 その値を問題のk列の箱の数とすれば、勝てる
(∵決定番号の定義より、dmax99番目の箱は、問題のk列とその代表とで一致しているから)
3)しかし、決定番号は、
 自然数N同様に非正則分布>>13だから、これは言えない
 つまり、確率はP(Xdk<=dmax99)=0 とすべきだ
(非正則分布なので、上限なく発散しているので、dmax99<=Xdk となる場合が殆ど)
4)もし、決定番号が、[0,M](Mは有限の正整数)の一様分布ならば
 dmax99が分かれば、例えば、
 0<=dmax99<=M/2 ならば、勝つ確率は1/2以下
 M/2<=dmax99<=M ならば、勝つ確率は1/2以上
 と推察できて
 それを繰り返せば、大数の法則で、P(Xdk<=dmax99)=99/100が言えるだろう
(注:dmax99は、100列中の99列の最大値なので、P(Xdk<=dmax99)=99/100が正しいだろう)
 しかし、非正則分布では、このような大数の法則は適用できない
5)人は無意識に、決定番号も正則分布のように錯覚して、トリックに嵌まるのです
 しかし、非正則分布では、大数の法則も使えない
 結局、時枝記事の99/100は、だましのトリックってことです

つづく

6:132人目の素数さん
23/10/07 20:21:58.00 4kGNvCC4.net
つづき

なお、
おサル=サイコパス*のピエロ(不遇な「一石」URLリンク(textream.yahoo.co.jp) 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets**) (Yahoo!でのあだ名が、「一石」)
<*)サイコパスの特徴>
(参考)URLリンク(blog.goo.ne.jp) サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
(**)注;URLリンク(en.wikipedia.org) Hyperboloid
Hyperboloid of two sheets :URLリンク(upload.wikimedia.org)
URLリンク(ja.wikipedia.org) 双曲面
二葉双曲面 :URLリンク(upload.wikimedia.org)

おサルさんの正体判明!(^^)
スレ12 スレリンク(math板:923番) より
”「ガロア理論 昭和で分からず 令和でわかる
 #平成どうしたw」
昭和の末期に、どこかの大学の数学科
多分、代数学の講義もあったんだ
でも、さっぱりで、落ちこぼれ卒業して
平成の間だけでも30年、前後を加えて35年か”
”(修士の)ボクの専攻は情報科学ですね”とも

可哀想に、数学科のオチコボレで、鳥無き里のコウモリ***)そのもので、威張り散らし、誰彼無く噛みつくアホ
本来お断り対象だが、他のスレでの迷惑が減るように、このスレで放し飼いとするw(^^

注***)鳥無き里のコウモリ:自分より優れた数学DRやプロ数学者が居ないところで、たかが数学科のオチコボレが、威張り散らす姿は、哀れなり~!(^^;

なお
低脳幼稚園児のAAお絵かき
小学レベルとバカプロ固定
は、お断りです

小学生がいますので、18金(禁)よろしくね!(^^
テンプレは以上です

7:132人目の素数さん
23/10/07 21:30:41.18 /WfOwzrX.net
>>1
>(Pruss氏)
以下の発言から分かる通り、Prussは箱入り無数目成立を完全に認めています。
「What we have then is this: For each fixed opponent strategy, if i is chosen uniformly independently of that strategy (where the "independently" here
isn't in the probabilistic sense), we win with probability at least (n-1)/n. That's right.」

>(Huynh氏)
>If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.
以下の発言から分かる通り、Huynhは標本空間について典型的な誤解をしています。
箱入り無数目(=The Modification)の標本空間は「the space of functions f:N→R」ではありません。
「In order for such a question to make sense, it is necessary to put a probability measure on the space of functions f:N→R.」

8:132人目の素数さん
23/10/07 21:32:28.49 /WfOwzrX.net
>>2
>Sergiu Hart氏は、ちゃんと”シャレ”が分かっている(関西人かもw)
妄想

>Some nice puzzles Choice Games と、”おちゃらけ”であることを示している
数学パズルを知らない馬鹿

>かつ、”P2 Remark.”で当てられないと暗示している
”P2 Remark.”の対象は有限列
箱入り無数目の対象は無限列
最後の項が存在する有限列で当てられないからといって、最後の項が存在しない無限列で当てられないことはなりません
バカですか?

>また、”A similar result, but now without using the Axiom of Choice.GAME2”
>で、選択公理なしで同じことが成り立つから、”選択公理”は、単なる目くらましってことも暗示している
選択関数が構成可能な場合は選択公理は不要ですけど?それが何か?

>・Pruss氏とHuynh氏とは、経歴を見ると、数学DRです。両者とも、このパズル(=riddle)は、可測性が保証されていないと回答しています
は、>>6で完全に論破されました。

9:132人目の素数さん
23/10/08 04:46:30.45 YVHJDkwe.net
>>4
>3)決定番号は、自然数N同様に非正則分布だから、
>確率P(Xdk<=dmax99)=0とすべきだ

”非正則分布”により、自然数nのランダム選択を行うごとに
毎回、最大値が更新されるように思われるのは、一種の錯覚である

毎回の選択の分布が、正則分布でありかつ独立同分布であるなら
n回目に選択された数が、それ以前の値より大きくなる確率は1/nとなる
このことは証明できる

非正則分布の場合には上記の命題の証明ができないが
それは非正則分布の場合、多重積分の順序交換が成立しないからで
そのような分布で、ある順序で計算した値に固執しても、正しい結論とはいえない

>4)非正則分布では、このような大数の法則は適用できない

大数の法則が適用できないからといって、
多重積分のある特定の順序での計算のみが正しい
ということにはならないので、
100番目の列の決定番号が
それ以前の99番目までの決定番号より大きいと
結論することはできない

>5)人は無意識に、決定番号も正則分布のように錯覚して、トリックに嵌まる
>しかし、非正則分布では、大数の法則も使えない
>結局、時枝記事の99/100は、だましのトリック

素人は無意識に多重積分の計算が正しい値をもたらすと思い込んで、トリックにはまる
しかし、非正則分布では、そもそも多重積分が計算順序によって異なる値となるから、意味をなさない
結局、「当たる確率0」こそ、非正則分布の多重積分のトリック

10:132人目の素数さん
23/10/08 04:55:09.85 YVHJDkwe.net
>>3
>選択公理不使用のGAME2があるから、
>ソロベイの定理から、ヴィタリのような非可測は否定される

GAME2は、選択公理を使わずに証明できる、というだけのこと
ソロベイの定理とか関係ないし、非可測性も否定しない

そもそも[0,1)内の有理数の全体から
ランダムに1つを選ぶ正則分布なんて存在しない
測度の定義が分かっていれば即座に証明できる
[0,1)内の有理数全体の測度を1とし、
かつ1点集合の測度が皆等しいとすると
1点集合が非可測になってしまうから

11:132人目の素数さん
23/10/08 09:24:18.21 ssyedOaB.net
>>9
>>選択公理不使用のGAME2があるから
>>ソロベイの定理から、ヴィタリのような非可測は否定される
>GAME2は、選択公理を使わずに証明できる、というだけのこと
>ソロベイの定理とか関係ないし、非可測性も否定しない
スレ主です
1)下記ソロベイで、フルパワー選択公理を使わなければ、ZFで全ての実数の集合がルベーグ可測(到達不能基数は存在)
2)選択公理不使用のGAME2(可算無限)には、ヴィタリのような非可測集合は出現しない
3)にも関わらず、箱入り無数目の原理が成り立っている
4)箱入り無数目で、フルパワー選択公理→非可測→お手つきは、時枝さんの勘違い
URLリンク(ja.wikipedia.org)
ヴィタリ集合
1970年にロバート・ソロヴェイは、到達不能基数の存在を仮定することにより、全ての実数の集合がルベーグ可測となるような(選択公理を除いた)ツェルメロ・フレンケル集合論のモデルを構築した
>そもそも[0,1)内の有理数の全体から
>ランダムに1つを選ぶ正則分布なんて存在しない
>測度の定義が分かっていれば即座に証明できる
>[0,1)内の有理数全体の測度を1とし、
>かつ1点集合の測度が皆等しいとすると
>1点集合が非可測になってしまうから
1)測度の考え方は、いくつもある
2)ルベーグ測度では「可算集合のルベーグ測度は必ず 0 」だから、有理数の全体の測度は0
3)一方、数え上げ測度では、有理数の全体の測度は∞で、1点集合の測度は1
4)「1点集合が非可測」とか、無茶苦茶
URLリンク(ja.wikipedia.org)
ルベーグ測度
可算集合のルベーグ測度は必ず 0 である
URLリンク(ja.wikipedia.org)
数え上げ測度
集合の元の個数を数えるという方法でその "大きさ"を測る
定義
可測空間 S 上の数え上げ測度とは、任意の可測集合 A に対してその元の個数 |A| ∈ N ∪ {∞} を対応させる写像によって定義される測度のことである。ここで、N は自然数全体の成す集合 {0, 1, 2, ...} であり、A が有限でないならばその濃度に関わらず |A| = ∞

12:132人目の素数さん
23/10/08 10:05:49.13 YVHJDkwe.net
>>10
>ソロベイで、フルパワー選択公理を使わなければ、
>ZFで全ての実数の集合がルベーグ可測(到達不能基数は存在)
「フルパワー選択公理を使わなければ・・・」は誤解
「フルパワー選択公理が成立しないモデルで
 全ての実数の集合がルベーグ可測となるものが存在する」が正解
>選択公理不使用のGAME2(可算無限)には、
>ヴィタリのような非可測集合は出現しない
 そもそも[0,1)内の有理数全体の集合の測度を1とし
 任意の1点集合の測度を等しくするような測度では
 1点集合が非可測集合 
 このことはヴィタリ集合の非可測性と同じやり方で証明できる
>にも関わらず、箱入り無数目の原理が成り立っている
Game2の成立は認めるんですか?
>箱入り無数目で、フルパワー選択公理→非可測→お手つきは、
>時枝さんの勘違い
勘違いではないですね
ソロベイモデルおよび非可測性について勘違いしてるのはあなたです

13:132人目の素数さん
23/10/08 10:10:45.55 YVHJDkwe.net
>測度の考え方は、いくつもある
>一方、数え上げ測度では、有理数の全体の測度は∞で、1点集合の測度は1
>「1点集合が非可測」とか、無茶苦茶
有理数全体からランダムに選ぶ、とあなたが考えるなら
有理数全体の確率測度が必要
全体を1とするなら、1点集合の測度は1/∞だが、
1/∞=0とすると可算加法性を否定するから
非可測とせざるを得ない
これ、非可測性の証明、一度でも見たことある人なら
誰でも知ってることなんだけどなあ

14:132人目の素数さん
23/10/08 10:10:48.12 ssyedOaB.net
>>4
>3)しかし、決定番号は、
> 自然数N同様に非正則分布>>13だから、これは言えない
> つまり、確率はP(Xdk<=dmax99)=0 とすべきだ
>(非正則分布なので、上限なく発散しているので、dmax99<=Xdk となる場合が殆ど)
スレ主です
R^Nのしっぽ同値類が、無限次元ユークリッド空間を成すことを示す
1)まず、ある同値類で、代表列r=(r1,r2,・・rd,rd+1・・)として
 同じ同値類の数列s=(s1,s2,・・sd,sd+1・・)とする
 決定番号がdとして、d番目以降が全て一致、即ち rd=sd,rd+1=sd+1・・とする
 数列をベクトルと見て、差を作る
 r-s=(r1-s1,r2-s2,・・rd-1-sd-1,0,0・・)
 つまり、差r-sは d-1次元空間のベクトルと同一視できる(但し、rd-1-sd-1≠0 )
2)さて、同様にして、dの後者d+1に対して同様にd次元空間を考えることができ
 そのまた後者・・と無限に続く
 これは、ペアノ公理の自然数の構成と同じだ
 よって、決定番号dは自然数全体を渡り、それが成す空間も無限次元ユークリッド空間を成す
3)問題は、無限次元ユークリッド空間から、100個のベクトルr-sたちを選んで
 それらが、ある有限次元 d1,d2,・・d100 に入っているという議論が成り立つのか?
 明らかに、No!。3次元空間で2次元図形の占める体積0だ。同様、d+1次元中のd次元の(超)体積は0
4)箱入り無数目は、体積0の中で確率99/100 を論じているのです

15:132人目の素数さん
23/10/08 10:14:30.75 YVHJDkwe.net
>>13
>無限次元ユークリッド空間から、100個のベクトルr-sたちを選んで
>それらが、ある有限次元 d1,d2,・・d100 に入っている
>という議論が成り立つのか?
ええ、成り立ちます(断言)
あなたのいう「無限次元ユークリッド空間」というのは
「全ての有限次元ユークリッド空間の集合和」∪(n∈N)R^n
なので、その中のいかなる要素も
ある有限n次元のユークリッド空間R^n
の要素です

16:132人目の素数さん
23/10/08 10:19:04.35 YVHJDkwe.net
>>14のつづき
>明らかに、No!
ではr-sがいかなる有限次元ユークリッド空間R^nの元にもならないような
rとsの例を一つでいいからここでお示しいただけますか?
私はそのようなrとsは存在し得ない、と断言します
なぜなら、それはrとsは尻尾同値でないことを示すので
そもそもrがsの同値類の代表であることに反しますから

17:132人目の素数さん
23/10/08 10:33:42.03 ssyedOaB.net
>>12
>有理数全体からランダムに選ぶ、とあなたが考えるなら
>有理数全体の確率測度が必要
>全体を1とするなら、1点集合の測度は1/∞だが、
>1/∞=0とすると可算加法性を否定するから
>非可測とせざるを得ない
必死でゴマカシ、墓穴掘るw
1)全ては、数え上げ測度>>10で終わっている
 有理数Qの一つの元qは、数え上げ測度で1
 Q全体は、可算無限で∞(有限でないならばその濃度に関わらず |A| = ∞)
 非可測ではない
2)一方、実数R全体の中でルベーグ測度を考える
 ”可算集合のルベーグ測度は必ず 0 である”>>10から
 有理数Qはルベーグ測度0で、1点も0
 非可測ではない
なお、普通は有理数全体は、確率論では扱わない
「有理数全体からランダムに一つの有理数qを選ぶ確率」などとすると、結論は確率0だが
途中 有理数全体の数え上げ測度が∞に発散しているので、全事象Ω(=Q)を確率1にできない(非正則分布を成す)から

18:132人目の素数さん
23/10/08 10:39:37.54 ssyedOaB.net
>>15
>ではr-sがいかなる有限次元ユークリッド空間R^nの元にもならないような
>rとsの例を一つでいいからここでお示しいただけますか?
ご指摘ありがとう
訂正
 それらが、ある有限次元 d1,d2,・・d100 に入っているという議論が成り立つのか?
  ↓
 それらが、ある有限次元 d1,d2,・・d100 に入っているという確率の議論が成り立つのか?
これで良いだろう
無限次元ユークリッド空間中で
有限次元ユークリッド空間の占める割合は0!
箱入り無数目の確率の議論は、成り立たない!

19:132人目の素数さん
23/10/08 15:02:51.10 YVHJDkwe.net
>>16
>全ては、数え上げ測度で終わっている
>有理数Qの一つの元qは、数え上げ測度で1
>Q全体は、可算無限で∞(有限でないならばその濃度に関わらず |A| = ∞)
>非可測ではない
>一方、実数R全体の中でルベーグ測度を考える
>”可算集合のルベーグ測度は必ず 0 である”から
>有理数Qはルベーグ測度0で、1点も0
>非可測ではない
Q全体を1としたときの、1点の「割合」が確率ですよ
いくら確率測度以外の測度を持ち出しても
それでは確率は計算できないでしょう
違いますか?

20:132人目の素数さん
23/10/08 15:23:19.17 YVHJDkwe.net
>>17
>>ではr-sがいかなる有限次元ユークリッド空間R^nの元にもならないような
>>rとsの例を一つでいいからここでお示しいただけますか?
>ご指摘ありがとう
で、以下の文章に続くので
反例は示せないと認めた、と
>訂正
> それらが、ある有限次元 d1,d2,・・d100 に入っているという議論が成り立つのか?
>  ↓
> それらが、ある有限次元 d1,d2,・・d100 に入っているという確率の議論が成り立つのか?
>
>これで良いだろう
どうでしょう
>無限次元ユークリッド空間中で
>有限次元ユークリッド空間の占める割合は0!
その場合、全ての有限次元ユークリッド空間の集合和である
当該「無限次元ユークリッド空間」全体の測度も0ですけど
測度は可算加法的ですから
あなたのいう「無限次元ユークリッド空間」はR^Nの中では測度0です
[0,1]全体の中での、有限小数全体の集合の測度が0であるのと同じこと
>>16の例とかぶりますね
有限次元ユークリッド空間の代数次元は有限
「無限次元ユークリッド次元」の代数次元は可算無限
R^Nの代数次元は非可算無限
>箱入り無数目の確率の議論は、成り立たない!
では選択公理を否定して、
いかなる実数集合も可測となる「測度論の楽園」
に安住してはいかがですか?

21:132人目の素数さん
23/10/08 16:10:48.30 ssyedOaB.net
>>18
>Q全体を1としたときの、1点の「割合」が確率ですよ

分かってない!
一様分布を延長して「Q全体を1」とは出来ない
それ、非正則です(下記(→∞で、”確率の和が1ではありません”ということ))

(参考)
URLリンク(ai-trend.jp)
2020/04/14 AVILEN Inc.
非正則事前分布とは? 完全なる無情報事前分布
ライター:古澤嘉啓
(全体Ωが発散しているので)確率の和が1ではありません
(注:ここでの非正則事前分布は、一様分布の範囲を→∞に拡大したものです)
URLリンク(en.wikipedia.org)
Prior probability
Uninformative priors
The simplest and oldest rule for determining a non-informative prior is the principle of indifference, which assigns equal probabilities to all possibilities.

URLリンク(ja.wikipedia.org)
事前確率
比較して情報がない場合を無情報事前分布 (non-informative prior distribution) という。後者の場合には広く薄い信念を表明している形状が望まれ、その一類型として一様分布があるが、これ以外にも多数の理論分布が存在する。

22:132人目の素数さん
23/10/08 16:13:52.23 ssyedOaB.net
>>19
>では選択公理を否定して、
>いかなる実数集合も可測となる「測度論の楽園」
>に安住してはいかがですか?

可測 vs 非可測
の議論と
正則 vs 非正則
の議論が
分離できていない

選択公理を否定しても
非正則分布の議論は否定できません!w

23:132人目の素数さん
23/10/08 16:20:32.81 3/vjJQHl.net
>>20-21
非可測も非正則も箱入り無数目とは関係無い
確率空間に使ってないから
これは勝つ戦略の定義だから否定できない

24:132人目の素数さん
23/10/08 16:36:43.46 YVHJDkwe.net
>>21
>選択公理を否定しても非正則分布の議論は否定できません!

そもそも選択公理を否定すれば
任意有限長の列全体の空間の非正則分布なんて
出てくることがなくなるので、
測度原理主義者も安眠できると思うが

25:132人目の素数さん
23/10/08 16:38:52.03 YVHJDkwe.net
>>22
出題がその都度変わる場合の確率は計算できないが
出題が同じ場合の確率は計算できる

戦略ではなく問題設定の話

26:132人目の素数さん
23/10/08 17:02:47.19 3/vjJQHl.net
確率空間をどう設定するかは戦略の話

27:132人目の素数さん
23/10/08 17:18:12.77 YVHJDkwe.net
確率空間をどう設定するかは問題設定
方法としての戦略以前のこと

28:132人目の素数さん
23/10/08 17:21:19.18 YVHJDkwe.net
問題設定が違う場合、計算方法が変わるし、
その場合、測度論による計算ができないが
だからといって出題を固定した場合の結論が
成立しないと言い切れるかどうかは不明

時枝正の「非可測だからダメ、とはいえないのでは?」
はそういう主旨の発言

29:132人目の素数さん
23/10/08 18:02:27.95 3/vjJQHl.net
しっぽ同値を使うのは戦略
しっぽ同値が無ければ標本空間{1,2,・・・,100}も無い
よって確率空間は戦略

30:132人目の素数さん
23/10/08 18:17:14.19 YVHJDkwe.net
>>28
>しっぽ同値を使うのは戦略
 然り
>しっぽ同値が無ければ標本空間{1,2,・・・,100}も無い
 {1,2,・・・,100}が確率空間の中にあることは認める
 一方、(R^N)^100も確率空間の中に含めるか否かは
 問題設定であって戦略ではない

31:132人目の素数さん
23/10/08 18:19:14.22 YVHJDkwe.net
つまり、確率空間が
{1,2,・・・,100}か
(R^N)^100✕{1,2,・・・,100}か
は問題設定の違い

32:132人目の素数さん
23/10/08 18:21:09.04 YVHJDkwe.net
一方、必ず100番目を選ぶ、として
(R^N)^100のみを確率変数とするのは
問題設定も戦略も異なる

33:132人目の素数さん
23/10/08 18:24:40.46 YVHJDkwe.net
西軍の主張は、終始一貫して回答者の選択を無視し
>>31の形に基づいている
一方、東軍は>>30の前者、すなわち
回答者の選択肢{1,2,・・・,100}のみを
確率変数とする形に基づいている

34:132人目の素数さん
23/10/08 18:28:23.39 YVHJDkwe.net
問題文に回答者は100列の中からランダムに1列選べると書いてある以上
西軍の文章解釈は曲解・誤解である
唯一、有効な指摘は、
著者(時枝正)は確率変数を{1,2,・・・,100}ではなく
(R^N)^100✕{1,2,・・・,100}としても
同様の議論が成り立つと思い込んでいた、という点

35:132人目の素数さん
23/10/08 18:30:57.52 YVHJDkwe.net
いずれにしても、確率変数から{1,2,・・・,100}を落とすのはNG
正則分布なら
{1,2,・・・,100}
(R^N)^100✕{1,2,・・・,100}
(R^N)^100
の3つのどれでも同じ答えが得られるが、意味が異なる

36:132人目の素数さん
23/10/08 19:31:06.94 3/vjJQHl.net
確率空間を
{1,2,・・・,100}とするか
(R^N)^100✕{1,2,・・・,100}とするか
は戦略
後者だと勝つ戦略ではないだけ

37:132人目の素数さん
23/10/08 20:37:25.53 ssyedOaB.net
>>11
>>にも関わらず、箱入り無数目の原理が成り立っている
>Game2の成立は認めるんですか?
1)Game1と同様です。d1,d2,・・,d100の存在が取れたとして、ロジックに破綻はないと、御大はいう
 そこは良いんじゃ無いですか? 宝くじで、当りを引ければ10億円で、大金持ちで、ロジックに破綻はない
2)問題は、御大は”実効性”には 問題があるという
 例えば、選択公理は、しばしば”実効性”が問題になる
 ヴィタリの非可測集合が区間[0,1]に取れるというが、それを具体的に見える形で構成することはできない
 かつ、選択公理は可測性と相性が悪い。選択公理だけでは、確率測度の存在は言えない
3)結局、「宝くじで、当りを引ければ10億円で、大金持ち」のロジックは正しい
 問題は、その確率計算(99/100など)にきちんとした確率測度の裏付けがないこと
 及び 実際に「宝くじで、当りを引く」方法など、無いってことです

38:132人目の素数さん
23/10/08 20:46:41.82 YVHJDkwe.net
>>36
>>Game2の成立は認めるんですか?
>Game1と同様です。
>問題は、御大は”実効性”には 問題があるという
>例えば、選択公理は、しばしば”実効性”が問題になる

Game2では、選択公理は使っていませんよ
具体的に代表列をとれますから
したがって具体的に決定番号も求まる
誰にも実効性を否定できませんが?

39:132人目の素数さん
23/10/08 20:51:59.98 YVHJDkwe.net
>問題は、その確率計算(99/100など)に
>きちんとした確率測度の裏付けがないこと

西軍が確率変数を(R^N)^100だと取り違えてるだけなので
西軍の求める確率測度の裏付けなど全く必要ない

東軍は確率変数を{1,…,100}としている
したがって初等的な計算で確率が求まる

40:132人目の素数さん
23/10/08 22:00:28.26 ssyedOaB.net
>>37
>Game2では、選択公理は使っていませんよ
>具体的に代表列をとれますから

分かってない
1)あなたの言っているのは、フルパワー選択公理のこと
2)一方、選択公理の変種で可算選択公理があり(下記)、Game2では可算集合族だから、可算選択公理を使っているよ
3)可算選択公理でも、同様に「具体的な代表列」は実現できない

URLリンク(ja.wikipedia.org)
選択公理
歴史
集合論の創始者ゲオルク・カントールは、選択公理を自明なものとみなしていた。 実際、有限個の集合からなる集合族であれば、そのそれぞれの集合の中から順に1つずつ元を選び出し、それらを併せて集合とすればよいのであるから、このような操作ができることは自明である。
しかし、ツェルメロによる整列可能定理の証明に反論する過程で、エミーユ・ボレル、ルネ=ルイ・ベール、アンリ・ルベーグ、バートランド・ラッセルなどが選択公理の存在に気付き、新たな公理であることが認識されるようになった。確かに、無限個の集合からなる集合族の場合、上のような操作を想


41:定しても「順に選び出す」操作は有限回で終了することはないのだから、このような操作を行えるかどうかは必ずしも明らかではない。 https://ja.wikipedia.org/wiki/%E5%8F%AF%E7%AE%97%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 可算選択公理(英: Axiom of countable choice)とは、公理的集合論における公理のひとつで、空でない集合からなる可算な集合族があったときに、それぞれの集合から一つずつ元を選び出して新しい集合を作ることができるという公理である。ACωとも表記される。名前の通り、選択公理を可算集合族に限定したものになっている。 https://ja.wikipedia.org/wiki/%E5%BE%93%E5%B1%9E%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 従属選択公理 従属選択公理(英語: axiom of dependent choice; DCと略される)とは、選択公理(AC)の弱い形で、しかし実解析の大部分を行うのに十分な公理である。これはパウル・ベルナイスによって1942年の、解析学を実行するのに必要な集合論的公理を検討する逆数学の論文で導入された。[a]



42:132人目の素数さん
23/10/08 22:32:08.98 FL0eeRPF.net
A non-measurable tail set
David Blackwell, Persi Diaconis
URLリンク(projecteuclid.org)

43:132人目の素数さん
23/10/08 22:40:58.88 3/vjJQHl.net
>>39
>Game2では可算集合族だから、可算選択公理を使っているよ
はい、大間違いです。
Game2では選択公理が不要な理由が説明されています。
「Because there are only countably many sequences x ∈ {0,..., 9}^N that Player 1 may choose (namely, those x that become eventually periodic), we can order them—say x^(1), x^(2),..., x^(m),...—and then choose in each equivalence class the element with minimal index (thus F(x) = x^(m) iff m is the minimal natural number such that x ∼ x^(m)).」

君これが読めないの?なら中学英語からやり直し

44:132人目の素数さん
23/10/09 01:20:37.49 VGvgCBrr.net
>>22
戦略とは何だ?

45:132人目の素数さん
23/10/09 02:05:45.26 VGvgCBrr.net
数学板公安員会は
ある事象が存在するとその事象に対して確率が定義できないことは矛盾しない
ことが分からない。高卒なら仕方がないけど。

46:132人目の素数さん
23/10/09 05:35:27.30 ypK8kCOy.net
>>43
>二つの自然数n,mがあるときn>mとなる確率はいくつか
>(1)1/2
のようなバカなこと言ってるようじゃ箱入り無数目は到底理解できないので安心してスレ去りな

47:132人目の素数さん
23/10/09 06:07:52.53 nkohepzd.net
>>39
>>Game2では、選択公理は使っていませんよ
>>具体的に代表列をとれますから
>分かってない
>あなたの言っているのは、フルパワー選択公理のこと
>Game2では可算集合族だから、可算選択公理を使っているよ
>可算選択公理でも、同様に「具体的な代表列」は実現できない
残念ながら、分かってないのは、あなたのほう
Game2では、可算選択公理すら使ってない(強調!)
有理数の小数展開は必ず循環節を持つ(重要!)
したがって、最初の桁から循環節が始まる小数展開列が具体的な代表列
そしてGame2で当てられる列の項は当然ながら循環節の中にある

48:132人目の素数さん
23/10/09 06:28:30.53 VGvgCBrr.net
数学板公安委員会は非可測集合がわからない。ということはルベーグ積分をやったことがない。

49:132人目の素数さん
23/10/09 06:48:45.17 nkohepzd.net
>>41
プレイヤー1が選ぶことができるx∈{0,..., 9}^Nの系列は
可算個しかないので(つまり、最終的に周期的になるx)、
x^(1)、x^(2)、...、x^(m)、...と順番に並べ、
各同値類で最小のインデックスを持つ要素を選ぶことができる
(したがって、mがx〜x^(m)となる最小の自然数である場合、F(x)=x^(m))。
ここで、素人は
「ほら、可算個のx^(m)を並べて選択してるじゃん」
というんだろうけど、そこ”可算選択公理”と違うから
実際、そんなことしなくても、xを小数展開して循環節が求まれば
その循環節が小数点以下のはじめの桁から始まる小数展開列が代表列
同値となる全ての列から同じ代表列が取れるのはいうまでもない
一般に任意の有理数b/aは、以下のように表せる
b/a=c/10^m+d/(10^n-1)
cが非循環部ー循環節、dが循環節

50:132人目の素数さん
23/10/09 06:52:35.51 nkohepzd.net
1は有理数の小数展開が必ず循環節を持つことがわかってない
これ中学数学

51:132人目の素数さん
23/10/09 07:10:36.56 nkohepzd.net
前スレ
>仲介者型の内向型ってこと?確かに自分もそうだったけど
 正しくは仲介者型(INFP)の神経型(-T)だと思う
 なんだ、みんな同じ類の仲間だったのか・・・OTL
 
 基本的に
 内向的(I) 外向的(E)
 理想主義=直観的(N) 現実主義=感覚的(S)
 感情的(F) 思考的(T)
 判断保留的=認知的(P) (即)判断的(J)
 不安定(-T) 安定(-A)
 なんで
 ESTP-A(幹部型、外向的で現実主義、思考的で即判断的 安定的)
 な人とは合わないですねw

52:132人目の素数さん
23/10/09 07:11:54.88 nkohepzd.net
誤 ESTP-A(幹部型、外向的で現実主義、思考的で即判断的 安定的)
正 ESTJ-A(幹部型、外向的で現実主義、思考的で即判断的 安定的)
一文字間違った・・・OTL

53:132人目の素数さん
23/10/09 07:17:58.67 nkohepzd.net
幹部 ESTJ型の性格
URLリンク(www.16personalities.com)
秩序はあらゆるものの基礎である。
エドマンド・バーク
幹部は伝統や秩序を非常に大事にする人たちで、
社会的に容認されている事柄や善悪についての
自らの理解をもとに家族やコミュニティを団結させます。
正直である、何かに専念する、尊厳を保つ——
このような価値観を大切にしながら
分かりやすいアドバイス・指導をするので
人々にありがたがられているでしょう。
困難な状況にあっても喜んで皆を先導するタイプでもあります。
人をまとめる能力に誇りを持っているので
頻繁にコミュニティのまとめ役になり、
皆に愛されている地元のイベントを祝うために多くの人を呼び集めたり、
家族やコミュニティの団結のために重要な伝統的価値観を擁護したり
頑張る人たちです。
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
ああ、聞けば聞くほど煩わしい・・・
伝統と秩序、最も嫌いな言葉のトップ2ですわ(笑)

54:132人目の素数さん
23/10/09 07:23:35.74 nkohepzd.net
仲介者 INFP型の性格
URLリンク(www.16personalities.com)
仲介者(INFP)は控えめ、または静かそうに見えるかもしれませんが、
心の中は情熱であふれ、生き生きとしている人たちです。
独創的かつ想像力豊かなので、色々な空想をしながら、
さまざまな会話やストーリを作り上げることが好きなタイプでしょう。
繊細な気質の持ち主として知られていて、
音楽、芸術、自然、そして周りの人に対して、
深く感情的に反応する人たちです。
仲介者は高い理想を持ち、共感力が高く、
人助けが自分の使命だと感じていて、
深く心を通わす人間関係を


55:求めます。 でも全人口のうち仲介者が占める割合はとても低いので、 仲介者特有の気質を正当に評価しない世界にさまよいながら、 「自分は他の人に見えていないようだ…」と感じたり、 孤独感を覚えたりすることもあるでしょう。 金はすべて輝くとは限らない。 さまよい歩く者が皆迷っているとは限らない。 年老いても強い者は枯れない。 深い根に霜は届かない。 J・R・R・トールキン --------------------------------- ああ、まさに私自身のことを言っているようだ(単純w) こういう人がチンギス・ハンのごとき残虐な「幹部」に 「お前はお花畑の住人か!さっさと働け!(ピシッ)」 みたいなこと言われるわけですね ちなみにINFPの典型例であがってたのが・・・野比のび太w



56:132人目の素数さん
23/10/09 07:38:00.96 nkohepzd.net
1がESTJ-Aかどうかはわかりませんがw
ジャイアンはなんかESTJ-Aっぽい
漫画「ドラえもん」は
ジャイアンの圧政に抵抗する
野比のび太の日常を描いた
すばらしいドラマだったんですね(違)
URLリンク(www.youtube.com)

57:132人目の素数さん
23/10/09 07:54:15.71 nkohepzd.net
もう一つ、INFP-Tの悩みを赤裸々に描く名作
URLリンク(www.youtube.com)

58:132人目の素数さん
23/10/09 08:20:53.48 ypK8kCOy.net
>>47
>「ほら、可算個のx^(m)を並べて選択してるじゃん」
>というんだろうけど、そこ”可算選択公理”と違うから
可算無限個のxは自然数で附番でき、自然数を元とする任意の集合には最小元が存在するから、無限個の同値類のいずれにおいても代表元を確定できる。
よって選択公理不要。
>実際、そんなことしなくても、xを小数展開して循環節が求まれば
>その循環節が小数点以下のはじめの桁から始まる小数展開列が代表列
0.1212・・・と0.01212・・・は同値でない。
0.1212・・・が属す同値類の代表元は0.1212・・・として、
0.01212・・・が属す同値類の代表元は何?

59:132人目の素数さん
23/10/09 08:24:59.83 nkohepzd.net
>>55
>0.1212・・・と0.01212・・・は同値でない。
もちろんその通り
「循環節」という場合、開始位置も重要
前者の循環節は「12」
後者の場合0.21212…と同値であり、循環節は「21」
だから全然大した問題ではない

60:132人目の素数さん
23/10/09 08:28:49.57 nkohepzd.net
1/7~6/7は、循環節が”巡回”する例として知られるが
当然開始位置が違うので異なると判定する
1/7=0.142857…
2/7=0.285714…
3/7=0.428571…
4/7=0.571428…
5/7=0.714285…
6/7=0.857142…

61:132人目の素数さん
23/10/09 08:30:49.74 ypK8kCOy.net
>>56
なるほど、分かりました。

62:132人目の素数さん
23/10/09 08:33:25.21 nkohepzd.net
>>57
巡回がデタラメという人がいるだろうがそんなことはない
mod7で、5倍すればいい
 1
→1*5=5
→5*5=4
→4*5=6
→6*5=2
→2*5=3
→3*5=1

63:132人目の素数さん
23/10/09 08:43:27.73 WWXwkA0e.net
>>42 >>45
>>Game2では可算集合族だから、可算選択公理を使っているよ
>はい、大間違いです。
>Game2では選択公理が不要な理由が説明されています。
>「Because there are only countably many sequences x ∈ {0,..., 9}^N that Player 1 may choose (namely, those x that become eventually periodic), we can order them—say x^(1), x^(2),..., x^(m),...—and then choose in each equivalence class the element with minimal index (thus F(x) = x^(m) iff m is the minimal natural number such that x ∼ x^(m)).」
>Game2では、可算選択公理すら使ってない(強調!)
スレ主です
1)いや、”countably many”は、可算ってことで、有限ではない(可算無限)
 この話は、>>2 Choice Games November 4, 2013 URLリンク(www.ma.huji.ac.il)
 だが、実際 前段に「Player 1 chooses a rational number in the interval [0, 1] and writes down
its infinite decimal expansion 0.x1x2...xn..., with all xn ∈ {0, 1,..., 9}.」
 とある通り、rational number 有理数Qを使う(可算無限)
2)では、区間[0,1]の有理数Qのしっぽ同値類の集合族は、有限か?
 明らかに、No!
 証明:素数pの逆数1/p ∈[0, 1] を考える。1/pの小数展開の循環の仕方は全て異なり、素数は


64:無限 QED 3)よって、Game2ではしっぽ同値類は可算集合族を成し、可算選択公理を使っている  しかし、フルパワー選択公理は不要 あなた方 基礎学力低い



65:132人目の素数さん
23/10/09 08:51:46.58 nkohepzd.net
>>60
>区間[0,1]の有理数Qのしっぽ同値類の集合族は、有限か?明らかに、No!
 そこは1のいう通り 誰も否定してないよ
>よって、Game2ではしっぽ同値類は可算集合族を成し、可算選択公理を使っている
 1は
 「しっぽ同値類は可算集合族を成す⇒可算選択公理を使う」
 と思い込んでるみたいだけど、そこ誤り
 各同値類の循環節から代表列が具体的に構成できるから、
 可算選択公理すら使う必要がない、といってるんだが?
>あなた方 基礎学力低い
 申し訳ないが、それは私や他の方々が1に対して言いたい言葉かと
 循環節まで分かっているのなら、
 循環節だけで代表列が具体的に構成できることも分かるはず
 だから可算選択公理すら使う必要もないことも分かるはず
 分かってないなら考えてない 思考力が欠如している

66:132人目の素数さん
23/10/09 08:56:41.46 nkohepzd.net
1がいまだによく分かってない点
1.いかなる無限列もその決定番号は自然数の値を取る
2.同値類の集合族が無限であっても、
  各同値類から具体的に代表を取る方法があるなら
  いかなるレベルの選択公理も必要ない
3.出題列が固定されている場合、
  無限列全体からの出題列の選び方を
  考える必要はない

67:132人目の素数さん
23/10/09 08:58:10.88 nkohepzd.net
ところで、1はMBTIテストやった?
URLリンク(www.16personalities.com)

68:132人目の素数さん
23/10/09 09:03:48.21 WWXwkA0e.net
>>43 >>46
>数学板公安員会は
>ある事象が存在するとその事象に対して確率が定義できないことは矛盾しない
>ことが分からない。高卒なら仕方がないけど。
>数学板公安委員会は非可測集合がわからない。ということはルベーグ積分をやったことがない。
これは、もと弥勒菩薩こともと天皇陛下
スレ主です
同意です

69:132人目の素数さん
23/10/09 09:06:24.72 nkohepzd.net
>>64
誤 もと弥勒菩薩こともと天皇陛下
正 ニセ弥勒菩薩ことニセ天皇陛下
どっちも詐称だよね?
いうほうもいうほうだけど
真に受けるのもなんだかなあ

70:132人目の素数さん
23/10/09 09:15:06.62 nkohepzd.net
すっげぇどうでもいい疑問
URLリンク(www.16personalities.com)
分析家(-NT-)と外交官(-NF-)は第二フラグと第三フラグで分けてるのに
番人(-S-J)と探検家(-S-P)は第二フラグと第四フラグで分けてるの
なんでだろ?

71:132人目の素数さん
23/10/09 09:17:43.55 VGvgCBrr.net
数学板公安委員会は時枝記事を否定することは選択公理を否定することだと言っている。
選択公理は時枝記事とは関係なしに成立する。よって頭がおかしい

72:132人目の素数さん
23/10/09 09:17:48.41 WWXwkA0e.net
>>45
>Game2では、可算選択公理すら使ってない(強調!)
>有理数の小数展開は必ず循環節を持つ(重要!)
>したがって、最初の桁から循環節が始まる小数展開列が具体的な代表列
>そしてGame2で当てられる列の項は当然ながら循環節の中にある
スレ主です
分かってない
1)「具体的な代表列」? 全く具体的では無いぞ
 例えば、その論法が通用するならば、オイラー定数γが有理数か無理数かは、即座に判断できるぞ
 γを無限小数展開して、しっぽを見れば、循環か非循環か分かるぞw
2)選択関数自身が、非可算であれ、可算無限であれ、有限族であれ、具体性は要求されない
 例えば、いま出題者がπ=3.14159・・の小数部分の1桁を順に箱に入れた
 回答者は、14159・・の箱を100列に並べ替える
 回答者は、πの小数部分と知らされても、同値類を特定することはできない
(人は、πが超越数であることは知るが、その実際の無限小数展開を知るのは神のみ)
3)しかし、数学としては、14159・・の箱を100列に並べ替え、同値類が決まり、選択関数で代表が取れる
 具体性は全くないが
 具体性がないが、決定番号を考えることはできるし、その大小も考えることは可能だ
4)しかし、確率計算は不可!
(参考)
URLリンク(ja.wikipedia.org)
オイラーのγについて説明しています

73:132人目の素数さん
23/10/09 09:20:02.28 nkohepzd.net
>>66
一つの理由としては、直観は内的なものなので、
これを理論化するか(T)気分の赴くままにするか(F)が重要だが
現実は外的なものなので
判断して切り捨てるか(J)どうにかしようとするか(P)が重要


74: ってことなんかな?



75:132人目の素数さん
23/10/09 09:23:40.40 ypK8kCOy.net
>>67
対偶が分からないなら高校数学からやり直し

76:132人目の素数さん
23/10/09 09:27:25.18 nkohepzd.net
>>68
>分かってない
>「具体的な代表列」? 全く具体的では無いぞ
 え?そこから?
 小数点以下全てが循環節、ってこれ以上具体的なことないけどな
>例えば、その論法が通用するならば、
>オイラー定数γが有理数か無理数かは、即座に判断できるぞ
 え?そこから?
 有理数かどうかわからんもの持ってきちゃダメじゃん
>γを無限小数展開して、しっぽを見れば、循環か非循環か分かるぞw
 じゃ、やってみてw
 有理数って言ってるんだからb/aって形になってることが前提ね
 この場合は、必ず循環節があると分かるし、
 どういう循環節になるかも具体的に分かる
 割っていったときの余りのバリエーションが有限だし
 同じ余りが出てきたら、繰り返しと分かる
 もうねこのくらいのことは言わなくても気づいてほしいんだけどな
 そうじゃなかったら数学に興味ないってことだから
 数学板から立ち去ったほうが幸せになれるよ
 政治板で「日本万歳!!!」って絶叫してればいいじゃん
 伝統と秩序の維持が最も大事なんでしょ?
 ああ、なんであなたここにいるの?

77:132人目の素数さん
23/10/09 09:30:30.84 nkohepzd.net
>>67
>選択公理は時枝記事とは関係なしに成立・・・
ポール・コーエン
「俺の強制法による”選択公理の否定の無矛盾性”を否定するとはいい度胸だ」

78:132人目の素数さん
23/10/09 09:42:11.21 VGvgCBrr.net
>>70
書いてみろ

79:132人目の素数さん
23/10/09 10:44:24.21 VGvgCBrr.net
数学板公安委員会は対偶が分からない

80:132人目の素数さん
23/10/09 11:32:52.49 VGvgCBrr.net
お前日本語分からないの?
URLリンク(detail.chiebukuro.yahoo.co.jp)

相手をやりこめたいだけ

81:132人目の素数さん
23/10/09 11:57:09.57 VGvgCBrr.net
数学公安委員会の戦略
時枝記事を否定することを否定する
それが成功しても時枝記事が正しい事にはならない、残念

82:132人目の素数さん
23/10/09 11:58:06.06 VGvgCBrr.net
ちなみに、これは二重否定

83:132人目の素数さん
23/10/09 12:20:11.21 VGvgCBrr.net
数学板公安員会は時枝記事を命題の形に書けない。よって論外。

84:132人目の素数さん
23/10/09 12:21:59.49 ypK8kCOy.net
今日も発狂してるね

85:132人目の素数さん
23/10/09 12:46:12.08 VGvgCBrr.net
命題P:主張
命題Q:証明

  P  真  偽
Q 真  真  偽
  偽 不明 不明

これを真理値表という

86:132人目の素数さん
23/10/09 13:57:18.81 VGvgCBrr.net
数学板公安委員会のペテンは、命題の証明が正しい、正しくないことを命題の真偽にすり替えること

87:132人目の素数さん
23/10/09 13:57:45.13 VGvgCBrr.net
数学板公安委員会のペテンは、命題の証明が正しい、正しくないことを命題の真偽にすり替えること

88:132人目の素数さん
23/10/09 13:59:07.13 VGvgCBrr.net
数学板公安委員会のペテンは、命題の証明が正しい、正しくないことを命題の真偽にすり替えること

89:132人目の素数さん
23/10/09 14:19:00.98 ypK8kCOy.net
真であることの正しい証明が与えられている偽命題って例えば何?

90:132人目の素数さん
23/10/09 14:54:44.95 VGvgCBrr.net
数学板公安委員会が命題を書かない理由は
1.命題が分からない
2.馬鹿だから命題の形に書けない
3.ワザと命題を書かない。相手を否定するだけなら簡単。命題を書くと突っ込まれるから。
三択です。

91:132人目の素数さん
23/10/09 14:55:24.72 VGvgCBrr.net
数学板公安委員会が命題を書かない理由は
1.命題が分からない
2.馬鹿だから命題の形に書けない
3.ワザと命題を書かない。相手を否定するだけなら簡単。命題を書くと突っ込まれるから。
三択です。

92:132人目の素数さん
23/10/09 14:55:53.37 IgcCDuiU.net
cos

93:132人目の素数さん
23/10/09 14:56:22.39 VGvgCBrr.net
数学板公安委員会が命題を書かない理由は
1.命題が分からない
2.馬鹿だから命題の形に書けない
3.ワザと命題を書かない。相手を否定するだけなら簡単。命題を書くと突っ込まれるから。
三択です。

94:132人目の素数さん
23/10/09 15:04:23.48 ypK8kCOy.net
君が買った数学セミナー2015.11月号に書かれてるから読みな
で、真であることの正しい証明が与えられている偽命題って例えば何?

95:132人目の素数さん
23/10/09 15:28:16.20 nkohepzd.net
>命題P:主張
>命題Q:証明
>
>  P  真  偽
>Q 真  真  偽
>  偽 不明 不明
これ P▢Qの真偽値表?
▢に演算子入れてみて
ちなみにP⇒Qは以下の通り
  P  真  偽
Q 真  真  真
  偽  偽  真
¬Q⇒¬Pは以下
  P  真  偽
Q 真  真  真
  偽  偽  真

96:132人目の素数さん
23/10/09 15:35:33.68 VGvgCBrr.net
>>88
答え
すべて同様に確からしいので確率1/3ですべての答えが正しい

97:132人目の素数さん
23/10/09 16:11:01.33 /4k2lNJJ.net
>>67
>数学板公安委員会は時枝記事を否定することは選択公理を否定することだと言っている。
>選択公理は時枝記事とは関係なしに成立する。よって頭がおかしい

これはこれは、もと弥勒菩薩こともと天皇陛下
スレ主です
同意です
過去にも書いたが

1)第三者代表選定委員会を結成して、出題者や回答者とは無関係に代表を選ぶ
 これで、選択公理の代用をすれば良い
2)実際やっていることは、100列の同値類→100個の代表を選ぶことで、有限の集合族で済む話
 有限の同値類と有限の代表ですむから、少し工夫すれば選択公理の代用は可能
3)よって、選択公理を否定しても、類似の論法は可能だ
 そもそもの、可算無限列のしっぽ同値類とその代表を使う数当てトリックを暴くべし!

「選択公理は時枝記事とは関係なしに成立する。よって頭がおかしい」

98:132人目の素数さん
23/10/09 16:19:49.98 nkohepzd.net
>>92
百一スレのadminです

>第三者代表選定委員会を結成して、
>出題者や回答者とは無関係に代表を選ぶ
>これで、選択公理の代用をすれば良い
>よって、選択公理を否定しても、類似の論法は可能だ
 
わざわざ第三者機関まで設置して
たかだか有限個を除く全ての箱の回答を教えていただき
まことにありがたく存じます
・・・これで勝ったな(ボソッ)

#大阪城の堀を自ら全部埋めるとは奇特なこと

99:132人目の素数さん
23/10/09 16:25:37.54 VGvgCBrr.net
数学板公安委員会の常套句

数学セミナーの時枝記事を読め
間違いを指摘すると日本語が読めないと反論
答えれない質問には質問で返す、はぐらかす

100:132人目の素数さん
23/10/09 16:27:10.41 nkohepzd.net
>>93
ところで、第三者代表選定委員会による代表は
箱を開ける前に全部公表しても
ゲームに全く影響を与えません

というのは、それだけではどこから一致が始まるのか分からないから
結局決定番号を知るには、箱を全部開けるしかありません
しかしながら100列の決定番号は、代表の決定によって
箱を開ける前に全て決定してしまっております

あとは、100列中、最大の決定番号をもつ1列さえ選ばなければ
自列の決定番号は他の列の決定番号最大値以下になるので
代表の値から中身が分かっちゃいます

第三者代表選定委員会さん、公然カンニング御協力有難う!

101:132人目の素数さん
23/10/09 16:30:29.46 VGvgCBrr.net
半角アスペ

102:132人目の素数さん
23/10/09 16:32:52.36 nkohepzd.net
ID:VGvgCBrr 君へ

MBTIテストの結果教えてw
URLリンク(www.16personalities.com)

103:132人目の素数さん
23/10/09 16:34:26.22 ypK8kCOy.net
>>92
>1)第三者代表選定委員会を結成して、出題者や回答者とは無関係に代表を選ぶ
> これで、選択公理の代用をすれば良い
「選択公理を仮定すれば勝てる」という主張に対してナンセンス
君が証明しなければならないのは「選択公理を仮定しても勝てない」だ

104:132人目の素数さん
23/10/09 16:46:42.23 nkohepzd.net
>>98
>「選択公理を仮定すれば勝てる」
>という主張に対してナンセンス
>君が証明しなければならないのは
>「選択公理を仮定しても勝てない」だ

まったくその通りなんですけど
ぬっしー氏は論理が苦手なんで
そのことが分からないんですねぇ

で、
「決定番号は確率1で∞!」(全くの誤り)だの
「どんなnでもn以下の数は有限で
 nより大きい数は無限だから
 nより大きい確率は1」(見当違い)だの
といった不規則発言を繰り返し喚く以外出来ないんですね

105:132人目の素数さん
23/10/09 16:49:11.78 nkohepzd.net
何度でも繰り返し申し上げるが
「箱入り無数目は必ず失敗する!」と云うのに
非正則分布とかいうおかしな分布を使うよりは
選択公理による代表の決定を否定したほうが
はるかに確実なんですがねえ

何を怖がっているんでしょうか?ぬっしーは

106:132人目の素数さん
23/10/09 17:00:02.47 /4k2lNJJ.net
>>41
>・同値類の集合族が無限であっても、
>各同値類から具体的に代表を取る方法があるなら
>いかなるレベルの選択公理も必要ない

スレ主です。お得意の論点ずらしかな?w
1)”具体的に”の定義は? 何を言おうとしたのかな?
2)”いかなるレベルの選択公理も必要ない”とは?
 例えば、一例でいいから、非可算の同値類集合族において
 ”具体的に代表を取る方法がある”を、ZFでどの公理を使うかを明示的に書いて
 選択公理の代用が可能なことを示せ!

これが出来たら、基礎論くんの実力を認める ;p)

(参考)
URLリンク(ja.wikipedia.org)
選択公理
歴史
集合論の創始者ゲオルク・カントールは、選択公理を自明なものとみなしていた。 実際、有限個の集合からなる集合族であれば、そのそれぞれの集合の中から順に1つずつ元を選び出し、それらを併せて集合とすればよいのであるから、このような操作ができることは自明である。
しかし、ツェルメロによる整列可能定理の証明に反論する過程で、エミーユ・ボレル、ルネ=ルイ・ベール、アンリ・ルベーグ、バートランド・ラッセルなどが選択公理の存在に気付き、新たな公理であることが認識されるようになった。確かに、無限個の集合からなる集合族の場合、上のような操作を想定しても「順に選び出す」操作は有限回で終了することはないのだから、このような操作を行えるかどうかは必ずしも明らかではない。

選択公理は、それ自身もまたその否定もほかの公理からは証明できないものであること、すなわち独立であることが示された(クルト・ゲーデル、ポール・コーエン)

107:132人目の素数さん
23/10/09 17:12:19.96 /4k2lNJJ.net
>>100
>「箱入り無数目は必ず失敗する!」と云うのに
>非正則分布とかいうおかしな分布を使うよりは
>選択公理による代表の決定を否定したほうが
>はるかに確実なんですがねえ

スレ主です
1)>>92で言っていることは、真逆で
 選択公理を否定しても、実際に使っているのは有限の集合族でしかないから
 有限の集合族に対して、同値類と代表と決定番号をもってくれば
 箱入り無数目同様のことが可能だってこと!
2)だから、箱入り無数目の真の不成立要因は
 同値類と代表と決定番号の議論に、確率測度の裏付けがないってことです
 こっちが根本の問題だと!

分かってないな
というか、選択公理は目くらまし
いかにも「お化けが出ます」という雰囲気づくりで
(本当はデタラメな)パラドックスを心理的に受容させる役割をしているってこと!

108:132人目の素数さん
23/10/09 17:47:59.34 VGvgCBrr.net
数学板公安委員会の手の内がバレてしましました。さあ大変。

109:132人目の素数さん
23/10/09 18:04:27.65 nkohepzd.net
>>101
>”具体的に”の定義は? 何を言おうとしたのかな?
代表選出の手続き及び結果が示せること
それ以外に無いと思うんですが?
>”いかなるレベルの選択公理も必要ない”とは?
選択公理を全く使わない、ってこと
それ以外に無いと思うんですが?
>例えば、一例でいいから、
>非可算の同値類集合族において
>”具体的に代表を取る方法がある”を、
>ZFでどの公理を使うかを明示的に書いて
>選択公理の代用が可能なことを示せ!
今、Qの話をしてるのになんで
非可算の同値類集合族になるのか分からんけど
例えば、X✕Yの2つの要素について、
同じxをもつものを同値とするなら
各xについて、あるy0∈Yをとってきて
(x,y0)を代表とすればいいだけ
この場合は選択公理要らないですね

110:132人目の素数さん
23/10/09 18:05:36.26 VGvgCBrr.net
数学板委員会は言う
・お前がすることはXXXだ
・お前はこのスレから去れ
議論の主導権を握りたい

111:132人目の素数さん
23/10/09 18:11:54.66 nkohepzd.net
>>102
>選択公理を否定しても、
>実際に使っているのは有限の集合族でしかないから
>有限の集合族に対して、同値類と代表と決定番号をもってくれば
>箱入り無数目同様のことが可能だってこと!
あらかじめ、どの集合族か分かっていれば、ね
でもそうではないよね?
無理やり実現しようとすると
「第三者機関によるカンニング」
が必要
そこまでやったらもう箱入り無数目の成功は
否定できないでしょ? 違いますか?
>だから、箱入り無数目の真の不成立要因は
>同値類と代表と決定番号の議論に、
>確率測度の裏付けがないってことです
>こっちが根本の問題だと!
「おかしな空間」上の話を否定するのは結構なんですが
「おかしくない空間」上の話が、選択公理で
「おかしな空間」上の話に持ち込まれるんなら
選択公理を否定すれば阻止できるでしょってことですよ

112:132人目の素数さん
23/10/09 18:18:39.25 nkohepzd.net
>>102
「おかしくない空間」=集合Sの無限直積S^N(Sの無限列)
「おかしな空間」  =集合Sの有限直積S^n全ての集合和(Sの任意有限列)
S^Nの尻尾同値類の代表が選択公理で選出できると
S^Nのランダムネスの話が、
∪(n∈N)S^nのランダムネスの話に
なってしまっておかしなことになる
で、∪(n∈N)S^nのランダムネスなんて
実現できないから無理、っていうんだったら
S^Nから∪(n∈N)S^nに通じる「選択公理」ルートも
遮断しなきゃヌケサクでしょってことなんですけどね
箱入り無数目の証明の論理分かってますか?

113:132人目の素数さん
23/10/09 18:19:39.21 nkohepzd.net
>>102
「おかしくない空間」=集合Sの無限直積S^N(Sの無限列)
「おかしな空間」  =集合Sの有限鋳シ積S^n全ての集合和(Sの任意有限列)

114:132人目の素数さん
23/10/09 18:20:04.33 nkohepzd.net
S^Nの尻尾同値類の代表が選択公理で選出できると
S^Nのランダムネスの話が、
∪(n∈N)S^nのランダムネスの話に
なってしまっておかしなことになる

115:132人目の素数さん
23/10/09 18:20:44.80 nkohepzd.net
で、∪(n∈N)S^nのランダムネスなんて
実現できないから無理、っていうんだったら
S^Nから∪(n∈N)S^nに通じる「選択公理」ルートも
遮断しなきゃヌケサクでしょってことなんですけどね

116:132人目の素数さん
23/10/09 18:25:09.96 VGvgCBrr.net
スレウメヤッテロ、カス

117:132人目の素数さん
23/10/09 21:04:50.35 WWXwkA0e.net
>>111
これは、もと弥勒菩薩こともと天皇陛下
スレ主です
完全に同意です

118:132人目の素数さん
23/10/09 21:12:46.55 WWXwkA0e.net
>>104
スレ主です
案の定逃げたね
(引用開始)
>>41
>・同値類の集合族が無限であっても、
>各同値類から具体的に代表を取る方法があるなら
>いかなるレベルの選択公理も必要ない
(引用終り)
だったろう?
基礎論くん、あなたは多少は基礎論できるかなと、少しは思った自分が甘かったw
まるっきりアホや
>>例えば、一例でいいから、
>>非可算の同値類集合族において
>>”具体的に代表を取る方法がある”を、
>>ZFでどの公理を使うかを明示的に書いて
>>選択公理の代用が可能なことを示せ!
>
>今、Qの話をしてるのになんで
>非可算の同値類集合族になるのか分からんけど
>例えば、X✕Yの2つの要素について、
>同じxをもつものを同値とするなら
>各xについて、あるy0∈Yをとってきて
>(x,y0)を代表とすればいいだけ
>この場合は選択公理要らないですね
設問に対して、逃げのピッチングね
院試では、点つかない典型答案だな
設問に対しては、真正面からストライクを投げ込まないと、院試では得点にならない
0点答案です!w

119:132人目の素数さん
23/10/09 21:20:47.19 ypK8kCOy.net
>>102
>2)だから、箱入り無数目の真の不成立要因は
> 同値類と代表と決定番号の議論に、確率測度の裏付けがないってことです



120:勝つ戦略の確率空間は同値類も代表も決定番号も使ってないので大外し と何度も言ってるのに日本語分かりませんか?なら小学校の国語からやり直し



121:132人目の素数さん
23/10/09 21:24:54.51 VGvgCBrr.net
国語が分からない=俺の言ってることが分からない

122:132人目の素数さん
23/10/09 22:00:46.77 ypK8kCOy.net
言葉のキャッチボールという議論の基本中の基本ができなければ、一方的に持論を垂れ流し続ける壊れたレコーダに過ぎない
と言ってるだけなのに阿呆なID:VGvgCBrrには理解できませんでした

123:132人目の素数さん
23/10/09 22:15:07.47 nkohepzd.net
>>113
>案の定逃げたね
煽りなら無駄ですよ
>例えば、一例でいいから、
>非可算の同値類集合族において
>”具体的に代表を取る方法がある”を、
>ZFでどの公理を使うかを明示的に書いて
>選択公理の代用が可能なことを示せ!
>>例えば、X✕Yの2つの要素について、
>>同じxをもつものを同値とするなら
>>各xについて、あるy0∈Yをとってきて
>>(x,y0)を代表とすればいいだけ
>>この場合は選択公理要らないですね
>設問に対して、逃げのピッチングね
ストライクゾーンに入ってますよ
Xが非可算ならあなたのいう例になってます
まあ院試ではこんな簡単な問題は出ませんが
>設問に対しては、
>真正面からストライクを投げ込まないと、
>院試では得点にならない
あなたは問題で「一例でいいから」といいました
決して「任意の非可算の同値類集合族において」
とは書きませんでした
だからおサルでも分かる自明な例を示しました
当然ストライクです
しかも、晩年のカネやんが投げたみたいな
クッソ遅いスローカーブです
まあ、でも打てなかったんだからあなたの負けです
残念でした 高卒のぬっしー相手に大人気なかったと思うけどね
これが現実だから

124:132人目の素数さん
23/10/09 22:22:38.65 ypK8kCOy.net
>>113
>設問に対して、逃げのピッチングね
なぜ?
君の言う「一例」になってるやん
頭だいじょうぶ?

125:132人目の素数さん
23/10/09 22:30:30.70 nkohepzd.net
>>118
まさか例を示すと思わなかったんでしょう
しかも誤りを指摘することもできなかった

大体、有理数の小数展開で
具体的に循環節だけの代表が取れるって
脊髄反射で分かるセンスがない人に
数学科で学ぶ現代数学の理論なんて
残念ながら一つもわかるわけでないです
実際、理系の大学1年生が必ず学ぶ
線形代数の理論すら全く理解せず
任意の正方行列は逆行列をもつ!
と宣言しちゃう体たらくですから

こないだ大阪大学工学部卒の同僚にその話をしたら
「うそやろ、そいつ学歴詐称ちゃう?」
って言われました 私もそう思います

126:132人目の素数さん
23/10/09 22:34:32.24 nkohepzd.net
ぬっしーはもう箱入り無数目の件で何も書かなくていいんで
MBTIテストやった結果だけ報告してください
どういうタイプか知った上で、今後対応したいと思うんで
ちなみにもう一度やり直したら今度はINTP-Tになりました
URLリンク(www.16personalities.com)

127:132人目の素数さん
23/10/09 22:36:25.34 nkohepzd.net
多分NとTに関しては中間くらいなんで
質問と答え方で結果が変わるんですね きっと

128:132人目の素数さん
23/10/09 22:42:41.37 WWXwkA0e.net
>>117
スレ主です
さすがのサイコパス>>5
ああ言えばこう言うの詭弁の典型w

>例えば、一例でいいから、
>非可算の同値類集合族において
>”具体的に代表を取る方法がある”を、
>ZFでどの公理を使うかを明示的に書いて
>選択公理の代用が可能なことを示せ!
>Xが非可算ならあなたのいう例になってます

ダメダメ
1)「非可算の同値類集合族」の条件を満たしていない、アホや
2)「ZFでどの公理を使うかを明示的に書いて」の条件を満たしていない、アホや
3)「選択公理の代用が可能なことを示せ」の条件を満たしていない、アホや

院試では、言い訳の場は与えられない
そもそも、答案は戻ってこない
採点も、どうなっているか不明(学部の定期試験なら採点にクレーム付けられるかもだが)
不合格者には弁解のチャンスなし!
だから、丁寧に答案を書かないとダメなんだよ
基礎論くん、アホやね

129:132人目の素数さん
23/10/09 22:46:00.11 VGvgCBrr.net
数学板公安委員会と言うペテン師が言葉のキャッチボールをしろと

130:132人目の素数さん
23/10/09 22:56:45.93 VGvgCBrr.net
数学板公安委員会の言葉のキャッチボール
XXXが分からなければ小学校の国語からやり直し

131:132人目の素数さん
23/10/09 23:27:35.18 ypK8kCOy.net
>>122
>1)「非可算の同値類集合族」の条件を満たしていない、アホや
Xが非可算集合なら満たしてるよ、アホや

>2)「ZFでどの公理を使うかを明示的に書いて」の条件を満たしていない、アホや
条件自体が不要、どうしても知りたいならおまえが考えればよい


132:、アホや >3)「選択公理の代用が可能なことを示せ」の条件を満たしていない、アホや 選択公理無しで代表を選択できてるんだから代用できてるやんw アホや



133:132人目の素数さん
23/10/09 23:30:52.89 ypK8kCOy.net
>>122
>だから、丁寧に答案を書かないとダメなんだよ
これ以上無い完全な答案なのにおまえが理解できないだけやんw
てかなんでおまえみたいなアホが採点者目線なんだよw

134:132人目の素数さん
23/10/10 05:00:21.23 OXFAhr28.net
>>122
ぬっしー、訳の分からん言い訳はいいから
MBTIテストやった結果だけ報告してください
どういうタイプか知った上で、今後対応したいと思うんで
URLリンク(www.16personalities.com)

135:132人目の素数さん
23/10/10 06:32:03.96 OXFAhr28.net
ぬっしーへの唯一の宿題
「MBTIテストやった結果の報告」
URLリンク(www.16personalities.com)

136:132人目の素数さん
23/10/10 07:48:48.66 S3u75LcO.net
時枝記事は数学板公安委員会(メンヘル婆)の押し

137:132人目の素数さん
23/10/10 09:42:26.05 S3u75LcO.net
メンヘル婆公安委員会

138:132人目の素数さん
23/10/10 14:05:07.66 S3u75LcO.net
間違えだらけの剽窃記事を有難がるメンヘル婆、数学をやり直し。

139:132人目の素数さん
23/10/10 14:06:54.80 S3u75LcO.net
間違えだらけの剽窃記事を有難がるメンヘル婆、数学をやり直し。

140:132人目の素数さん
23/10/10 21:35:44.42 FNWXrqHb.net
>>129-132
これは、もと弥勒菩薩こともと天皇陛下
スレ主です
ありがとうございます!
落ちこぼれさんの亡者たちに、弥勒菩薩の救いをお願いします!

141:132人目の素数さん
23/10/10 23:44:37.31 wHJVCPta.net
数学で反論できないと不規則発言ですか
やれやれ

142:132人目の素数さん
23/10/11 04:24:01.27 rb7PWelf.net
何言ってんだこいつ

143:132人目の素数さん
23/10/11 04:25:21.80 rb7PWelf.net
        ____
        /     \
     /   ⌒  ⌒ \   何言ってんだこいつ
   /    (●)  (●) \
    |   、" ゙)(__人__)"  )    ___________
   \      。` ⌒゚:j´ ,/ j゙~~| | |             |
__/          \  |__| | |             |
| | /   ,              \n||  | |             |
| | /   /         r.  ( こ) | |             |
| | | ⌒ ーnnn        |\ (⊆ソ .|_|___________|
 ̄ \__、("二) ̄ ̄ ̄ ̄ ̄l二二l二二  _|_|__|_

144:132人目の素数さん
23/10/11 05:41:20.72 M/q74ynS.net
>>133 ニセモノの菩薩に救いを求める哀れなぬっしー
>>134 駄々っ子ってそんなもの 身勝手な幼児

145:132人目の素数さん
23/10/11 05:43:57.66 M/q74ynS.net
ぬっしーへの唯一の宿題
「MBTIテストやった結果の報告」
URLリンク(www.16personalities.com)
結果予想 ぬっしーはESTJ
URLリンク(jp.indeed.com)

146:132人目の素数さん
23/10/11 08:04:04.14 1m8/Dmum.net
>>113
落ちこぼれの基礎論くんへ
(参考)
URLリンク(en.wikipedia.org)
Axiom of choice
Statement
A choice function (also called selector or selection) is a function f, defined on a collection X of nonempty sets, such that for every set A in X, f(A) is an element of A. With this concept, the axiom can be stated:
Axiom — For any set X of nonempty sets, there exists a choice function f that is defined on X and maps each set of X to an element of that set.
Formally, this may be expressed as follows:
∀X[φ not∈ X → ∃ f: X → ∪{A∈ X} A ∀A∈X (f(A)∈ A)].
Thus, the negation of the axiom of choice states that there exists a collection of nonempty sets that has no choice function.
Each choice function on a collection X of nonempty sets is an element of the Cartesian product of the sets in X. This is not the most general situation of a Cartesian product of a family of sets, where a given set can occur more than once as a factor; however, one can focus on elements of such a product that select the same element every tim


147:e a given set appears as factor, and such elements correspond to an element of the Cartesian product of all distinct sets in the family. The axiom of choice asserts the existence of such elements; it is therefore equivalent to: Given any family of nonempty sets, their Cartesian product is a nonempty set. https://ja.wikipedia.org/wiki/%E9%81%B8%E6%8A%9E%E5%85%AC%E7%90%86 選択公理



148:132人目の素数さん
23/10/11 10:19:31.95 VcgpD/5Z.net
>>139
スレ主です

落ちこぼれの基礎論くんへの選択公理の講義追加

URLリンク(en.wikipedia.org)
Axiom of choice

Restriction to finite sets
The usual statement of the axiom of choice does not specify whether the collection of nonempty sets is finite or infinite, and thus implies that every finite collection of nonempty sets has a choice function. However, that particular case is a theorem of the Zermelo–Fraenkel set theory without the axiom of choice (ZF); it is easily proved by the principle of finite induction.[7] In the even simpler case of a collection of one set, a choice function just corresponds to an element, so this instance of the axiom of choice says that every nonempty set has an element; this holds trivially. The axiom of choice can be seen as asserting the generalization of this property, already evident for finite collections, to arbitrary collections.

(google訳)
有限集合への制限
選択公理の通常のステートメントでは、空でない集合の集合が有限であるか無限であるかが指定されていないため、空ではない集合のすべての有限集合が選択関数を持つことを意味します。ただし、その特定のケースは、選択公理 (ZF) を持たないツェルメロ・フランケル集合理論の定理です。それは有限帰納法の原理によって簡単に証明されます。[7] 1 つのセットのコレクションというさらに単純なケースでは、選択関数は要素に対応するだけなので、選択公理のこのインスタンスでは、空でないすべてのセットには要素があることがわかります。これは自明の理である。選択の公理は、有限のコレクションではすでに明らかであるこの性質を任意のコレクションに一般化するものとみなすことができます。

149:132人目の素数さん
23/10/11 10:39:54.35 VcgpD/5Z.net
スレ主です
(引用開始)
>>41
>・同値類の集合族が無限であっても、
>各同値類から具体的に代表を取る方法があるなら
>いかなるレベルの選択公理も必要ない
スレ主です。お得意の論点ずらしかな?w
1)”具体的に”の定義は? 何を言おうとしたのかな?
2)”いかなるレベルの選択公理も必要ない”とは?
 例えば、一例でいいから、非可算の同値類集合族において
 ”具体的に代表を取る方法がある”を、ZFでどの公理を使うかを明示的に書いて
 選択公理の代用が可能なことを示せ!
(引用終り)
こうだったね
さて
・有限集合への制限:”それは有限帰納法の原理によって簡単に証明されます。[7]”>>140
・この有限帰納法は、即ち数学的帰納法だ
・数学的帰納法では、集合族が無限の場合には届かない
・だから、公理として選択公理を必要とする。可算なら可算選択公理で済む
・さて、各同値類から具体的に代表を取る方法があるとして
 数学的帰納法を使えば、任意有限の族の具体的選択関数の構成はできるが
 しかし、無限族には数学的帰納法では届かない
アホやね、基礎論くんは

150:132人目の素数さん
23/10/11 11:12:59.54 VcgpD/5Z.net
スレ主です
落ちこぼれの基礎論くんへの選択公理の講義追加
「具体的」>>141という幼稚な用語を使う君へ
基礎論の公理系では、「構成的」という用語が適切だろう(下記)
そして
・選択公理の必要性は、集合族が有限か、可算か、非可算かで分かれる
・また、下記”Martin-Löf 型理論と高次のHeyting 算術”では、選択公理では別の手段で実現できるとある
「具体的」? アホや
URLリンク(en.wikipedia.org)
Axiom of choice
In constructive mathematics
(google訳(抜粋))
構成的数学において
上で説明したように、ZFC では、選択公理は、明示的な例が構築されていないにもかかわらず、オブジェクトの存在が証明される「非構築的な証明」を提供できます。ただし、ZFC はまだ古典論理で形式化されています。選択公理は、非古典的論理が使用される構成数学の文脈でも徹底的に研究されています。選択公理のステータスは、構成数学の種類によって異なります。
Martin-Löf 型理論と高次のHeyting 算術では、選択公理の適切な


151:ステートメントは (アプローチに応じて) 公理として含まれるか、定理として証明可能です。[11] 構成的集合論では、ディアコネスクの定理は、選択公理が排中律を暗示していることを示しています(マルティン・レフ型理論ではそうではありませんが)。したがって、選択公理は一般に構成的集合論では利用できません。この違いの原因は、型理論の選択公理が、構成的集合論の選択公理が持つような拡張性の特性を持たないことです。[13] 構成的集合論の一部の結果では、可算選択の公理や従属選択の公理が使用されていますが、これらは構成的集合論における排中律を意味しません。特に可算選択の公理は構成数学で一般的に使用されますが、その使用法にも疑問があります。[14]



152:132人目の素数さん
23/10/11 12:00:44.75 hjWwlmNI.net
>>141 集合論初心者の方への御案内

選択公理が不要な例
URLリンク(mathlandscape.com)

選択公理が不要な例2.

Λ を無限集合とする。
Z^Λ=∏(λ∈Λ)Z
これは例えば,選択関数として f(λ)=0(λ∈Λ) とすれば良いだけですから,直積集合は空でありません。
このように,具体的に選択関数を一つ取ってこれる場合は,選択公理は不要です。

選択公理が不要な例3.

Λ⊂R とする。このとき
∏(λ∈Λ)[λ,λ+1]≠∅

これも,選択公理は不要です。
実際,f(λ)=λ とすれば,f:Λ→⋃ (λ∈Λ)​ [λ,λ+1] は選択関数の1つですね。

このように,各集合に具体的な性質が備わっている場合は,
選択関数を実際にかける場合が多く,選択公理は不要です。

153:132人目の素数さん
23/10/11 12:03:24.22 hjWwlmNI.net
>>142
>構成的集合論では、ディアコネスクの定理は、選択公理が排中律を暗示していることを示しています
構成的集合論に選択公理を追加すると、排中律が導ける(IZFC=ZFC)
しかし、構成的集合論に排中律を追加しても、選択公理は証明できない(ZF≠ZFC)

もし、排中律が成り立つから選択公理も成り立つ、と思い込んでいるなら、それは全くの誤解
(だいたい、Paul Cohenの成果と異なってしまう)

P.S.
>(マルティン・レフ型理論ではそうではありませんが)
Martin-Loef型理論はZFではない

>型理論の選択公理が、構成的集合論の選択公理が持つような拡張性の特性を持たない
「拡張性」=外延性(同じ要素を持つ集まりは等しい)
つまり、Martin-Loef型理論の型は外延が等しい(同じ要素を持つ)からといって等しいとはいえない

154:132人目の素数さん
23/10/11 17:09:33.99 rb7PWelf.net
選択公理は数学じゃないからやり直さなくていいんだよ

155:132人目の素数さん
23/10/11 18:02:07.59 rb7PWelf.net
定理 (Kuratowski).
X がポーランド空間とする。このとき、X はボレル空間として、R、N、有限空間の何れか一つに同型である。

156:132人目の素数さん
23/10/11 18:09:31.50 rb7PWelf.net
R^Nはボレル空間としてRと同型である

157:132人目の素数さん
23/10/11 18:10:40.16 M/q74ynS.net
ぬっしーへの唯一の宿題
「MBTIテストやった結果の報告」
URLリンク(www.16personalities.com)

158:132人目の素数さん
23/10/11 19:15:40.46 iMG6mx7o.net
>>141
>・さて、各同値類から具体的に代表を取る方法があるとして
> 数学的帰納法を使えば、任意有限の族の具体的選択関数の構成はできるが
> しかし、無限族には数学的帰納法では届かない
>アホやね、基礎論くんは
いずれの同値類からも代表元を選択する方法があるなら
それだけで選択関数は特定できるから、そもそも数学的帰納法は不要
アホやね、中卒くんは

159:132人目の素数さん
23/10/11 19:23:09.18 iMG6mx7o.net
>>142
>「具体的」>>141という幼稚な用語を使う君へ
「具体的」は数学用語ではない
「具体的」の意味が分からないなら辞書を引けばよい おまえは辞書も引けんのか?

このおサルは「固定」にも同じように言いがかりを付けた
数学では「固定」なんて至る所で使われてる
Prussも使っている
「For each fixed opponent strategy, if i is chosen uniformly independently of that strategy (where the "independently" here
isn't in the prob


160:abilistic sense), we win with probability at least (n-1)/n. That's right.」 辞書も引けないおサルは小学校の国語からやり直し



161:132人目の素数さん
23/10/11 19:27:46.22 iMG6mx7o.net
おサルはまず国語から
小学校の国語もできないおサルに大学数学が分かるはずが無い
そうだろ?

162:132人目の素数さん
23/10/11 19:57:16.17 M/q74ynS.net
ぬっしー entpかも
URLリンク(www.16personalities.com)

ひろゆきと同じで、口は達者だが、他人がいうほど賢くない

163:132人目の素数さん
23/10/11 20:29:37.96 1oUz4DgY.net
1は単に数学の内容が分かっておらず
表面的な知識として受け取っているだけ。
内容が分かっていれば、選択公理がなくても
代表系が「具体的に」取れるケースがある
ことなど即座に分かる話。
ちなみに、「循環列だから可算個」とは
まったく限らない。単に循環列の各数に
「任意の実数」を許せばいいだけ。
この場合も、代表系は純循環列を取れば
いいから、選択公理なしで箱入り無数目が
成立する。ただし、100列への分け方は
「mod 100 で分ける」など自然なやり方を
取る。こうすれば、100列に分けた各列にも
循環列という性質が遺伝するから都合がいい。

なお、「もと天皇」も、この「mod 100で分ける」
という誰でも思いつく分け方が分からず
「どうやって分けるんだ?」と惚けていたくらい
地頭が悪い。

164:132人目の素数さん
23/10/11 21:02:12.97 M/q74ynS.net
>>153
>ちなみに、「循環列だから可算個」とはまったく限らない。
Game2は有理数の10進小数展開なので、
各桁は0~9しか入らない、という想定

165:132人目の素数さん
23/10/11 21:51:59.51 rb7PWelf.net
数学板公安委員会を忖度すると
時枝記事で、「さて、1~100のいずれかをランダムに選ぶ」を誤解してるんだろう

無作為抽出 random sampling
標本調査を行うときの標本の選び方の一つで、選ぶ際の恣意性をなくし、全く確率的に母集団から選ぶ方法。
無作為抽出を行うことで、標本誤差の評価が可能になる。

母集団の分布はまた別の話、数字が等確率であることは関係ない

166:132人目の素数さん
23/10/11 21:55:15.78 iMG6mx7o.net
相変わらず頭悪いね君

167:132人目の素数さん
23/10/11 21:58:25.86 rb7PWelf.net
時枝も反省のところで、「確率は数学を越えて広がる生き物である」、と意味不明なことをいってる
等確率だと矛盾することを認めてる

168:132人目の素数さん
23/10/11 21:59:36.77 rb7PWelf.net
日本語が読めない数学板公安委員会

169:132人目の素数さん
23/10/11 22:03:44.35 rb7PWelf.net
>>157
追加
可測だと矛盾ことも認めてる

170:132人目の素数さん
23/10/11 22:52:04.77 iMG6mx7o.net
>>155
「さて、1~100のいずれかをランダムに選ぶ」
の「ランダムに」とは「等確率で」という意味だよ。
これは勝つ戦略の定義(の一部)だから拒否できない。

また、箱入り無数目で論じている確率は数学的確率であるから、統計学の「無作為抽出 random sampling」とは関係無い。大外し。

ほんと頭悪いね君

171:132人目の素数さん
23/10/12 04:26:37.08 IWZoTwFm.net
ほんとに馬鹿だね、数学(確率)を越えた解を確率で扱うことに矛盾を感じないアホ

172:132人目の素数さん
23/10/12 04:29:33.36 IWZoTwFm.net
ペテン師は矛盾を感じない

173:132人目の素数さん
23/10/12 04:49:38.50 3Q8M/EJJ.net
ぬっしーへの唯一の宿題
「MBTIテストやった結果の報告」
URLリンク(www.16personalities.com)

174:132人目の素数さん
23/10/12 08:23:26.72 3IS414iS.net
>>161-162
>ほんとに馬鹿だね、数学(確率)を越えた解を確率で扱うことに矛盾を感じないアホ
>ペテン師は矛盾を感じない
これは、もと弥勒菩薩こともと天皇陛下
スレ主です
完全同意です

175:132人目の素数さん
23/10/12 17:50:58.77 AA3g8JEI.net
大変です!
さっきナントカテスト、(適当)にやり直してみたら
冒険家になってました!
その日の気分でなんとなくポチポチしてるとタイプが変わってる‥
可能性が微ㇾ存‥?

176:132人目の素数さん
23/10/12 17:54:58.53 AA3g8JEI.net
そんな日替わりタイプじゃなくて、生年月日でガチガチに固定されてる14星座占ぃ、
くじら座ッチャマとへびつかい座ッチャマ居たら至急書き込みCREA!
‥にゃぴ、スルルェをご覧のょぃねら-のミナッチャマにおかれましてゎ、14星座占ぃと12星座占ぃでゎどっちが
どぅ?当たってそぅ?(気錯なタメロ)

177:132人目の素数さん
23/10/12 17:57:06.99 AA3g8JEI.net
モチペゎどっちもミミズガメ座ァ!なので変わってる感比較できません!
(池沼絶叫)

178:132人目の素数さん
23/10/12 17:59:47.14 3Q8M/EJJ.net
>>165 なんかテストが違うと結果も違うことがあるね
16ナントカいうところではINFPだったけど
別のところではINTPだったし
更に別のところではISTJだった
なんかよう分からんね

179:132人目の素数さん
23/10/12 18:02:48.78 AA3g8JEI.net
邪険、夜14星座占ぃにハマり魔性ねぇ…
14星座で12星座とゎ激変する人も居るってほんとぉ!だょ。めぅ(キッパリ)

180:132人目の素数さん
23/10/12 18:09:29.85 AA3g8JEI.net
モチモチペッペゎ占星術で観易ぃからょく淫屁ㇼアァッー!ㇽ腐ァ!㍉ィ!とかㇿィャㇽとか観てますけど、にゃぴ、
ゃはり21世紀からゎ14星座ですね、魔チガィナィ。
κo室κ∩м負債、ェメㇼ-タмでマチガィナィ(確信)。しましためぇ!
(池沼迷推理)

181:132人目の素数さん
23/10/12 18:13:26.85 AA3g8JEI.net
14でゎふたりのмゎ♏蠍座の女🦂なんですけど、本人たちゎまだまだ勘違ぃしてて♎天秤座だと思ってそぅなのも、ピグマリオン効果が無くて素敵です!
ふたりともガッチリガチガチの蠍座の女丸出しで笑っちゃうんすよねぇ!

182:132人目の素数さん
23/10/12 18:19:37.12 AA3g8JEI.net
 🎓
(◎◎q")ヂャ、ォレ、🌠ゥラナィ勉強シテマスゥゥ…
📖📚

183:132人目の素数さん
23/10/12 18:22:12.04 AA3g8JEI.net
ィノチ!ィノチ!ィノチィ!ィィ…ガケノォォ…ポニョォォ‥

184:132人目の素数さん
23/10/12 19:02:15.25 AA3g8JEI.net
スルルェ死んだッピ!

185:132人目の素数さん
23/10/12 19:22:23.66 3Q8M/EJJ.net
大丈夫、”アレ”が黙死した時点で死んでるから

186:132人目の素数さん
23/10/12 21:24:45.44 3IS414iS.net
>>104
>例えば、X✕Yの2つの要素について、
>同じxをもつものを同値とするなら
>各xについて、あるy0∈Yをとってきて
>(x,y0)を代表とすればいいだけ
>この場合は選択公理要らないですね
その例より下記だな?
下記”Polish space”=ポーランド空間
弥勒菩薩の住む世界だ
URLリンク(mathoverflow.net)
Unnecessary uses of the axiom of choice Feb 17, 2022 Tom Leinster
What examples are there of habitual but unnecessary uses of the axiom of choice, in any area of mathematics except topology?
I'm interested in standard proofs that use the axiom of choice, but where choice can be eliminated via some judicious and maybe not quite obvious rephrasing. I'm less interested in proofs that were originally proved using choice and where it took some significant new idea to remove the dependence on choice.
I exclude topology because I already know lots of topological examples. For instance, Andrej Bauer's Five stages of accepting constructive mathematics gives choicey and choice-free proofs of a standard result (Theorem 1.4): every open cover of a com


187:pact metric space has a Lebesgue number. Todd Trimble told me about some other topological examples, e.g. a compact subspace of a Hausdorff space is closed, or the product of two compact spaces is compact. There are more besides. To show what I'm looking for, here's an example taken from that paper of Andrej Bauer. It would qualify as an answer except that it comes from topology. 13 It is easy to prove the following in Z+CC (Zermelo plus countable choice): Every uncountable closed set of reals is in bijection with the reals. 2 This is provable in Z, even in second-order arithmetic. The principle ATR0 is equivalent to every uncountable closed set in a Polish space containing a perfect subset. – Elliot Glazer Feb 18, 2022



188:132人目の素数さん
23/10/12 22:47:07.52 8ISm62WD.net
>>164
箱入り無数目における「数学(確率)を越えた解」とは具体的には何ですか?

189:132人目の素数さん
23/10/13 06:06:37.84 c+TaAB7r.net
>>176 わけもわからず馬鹿騒ぐ
頭を磨く(polish)したほうがいいんじゃないか?

190:132人目の素数さん
23/10/13 06:08:54.77 c+TaAB7r.net
>>177
誤 数学(確率)を越えた解
正 俺の理解(確率)を越えた解
アホは自分の理解を越えるとみな間違いに見える ●違いだな

191:132人目の素数さん
23/10/13 06:28:35.09 EdwpS7jp.net
>>179
自己紹介乙

192:132人目の素数さん
23/10/13 06:35:14.96 EdwpS7jp.net
>>177
時枝記事を声を出して読んでごらん

193:132人目の素数さん
23/10/13 06:37:20.56 EdwpS7jp.net
>>178
わからないんですか

194:132人目の素数さん
23/10/13 08:19:29.51 ZR3RRiwq.net
>>176 追加
>>104
>例えば、X✕Yの2つの要素について、
>同じxをもつものを同値とするなら
>各xについて、あるy0∈Yをとってきて
>(x,y0)を代表とすればいいだけ
>この場合は選択公理要らないですね

スレ主です
この例は、単なる関数だね。選択関数ではなく
いわば”なんちゃって”選択関数だな
なお”具体的”という幼稚な用語は、基礎論にはそぐわないぞ

195:132人目の素数さん
23/10/13 08:21:58.35 ZR3RRiwq.net
>>180-182
これは、もと弥勒菩薩こともと天皇陛下
スレ主です
クソ記事「箱入り無数目」に騙され
迷える素人の確率論亡者をお救いください

196:132人目の素数さん
23/10/13 09:42:45.94 EdwpS7jp.net
>>177
時枝記事をチラシの裏に書き写してごらん

197:132人目の素数さん
23/10/13 13:26:42.90 EdwpS7jp.net
>>177
時枝記事を食べてごらん

198:132人目の素数さん
23/10/13 21:38:05.54 qYyuOgiq.net
|0↷
|д||){ モジョ痛ァ!が腐海に沈メラレダス‥
| !)
|ω!

199:132人目の素数さん
23/10/13 21:40:56.54 qYyuOgiq.net
| ↷0↷
|(||д||){ こ↑こ↓も直に腐海に沈む
|( !!)
| Ω

200:132人目の素数さん
23/10/13 21:49:30.82 qYyuOgiq.net
↶0↷   邪馬牙の襲撃により мojo痛ァ!でゎ
( ・д・)ψ 時が失ゎれ 過去の時空へのァㇰセ゚ㇲゎ
σ( )っ      不可能になった
  Ω   こ↑こ↓も直に腐海に沈むかも知れん
       貴重な文献ゎぉとっときなㇵㇾ

201:132人目の素数さん
23/10/13 21:55:16.80 qYyuOgiq.net
↑0↑
( ・д・){ ィョィョ KAZEガ吹ィテ来タ
(! )
↻Ω

202:132人目の素数さん
23/10/13 22:00:59.23 qYyuOgiq.net
↖ 0 ↗{ ゴラン高原ヲ観テゴラン
(( ・д・)        ( >>186){ ゴラン
GAZAヲ観テテごらん
アレが明日丿販ァッ!?アァッ-!EASTノ故郷の姿ダョ‥


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch