24/03/26 14:34:30.12 6Gb4+y1g.net
たとえばA,Bを別々の命題変数として
A∧¬AとB∧¬Bは同等でない矛盾とするなら
A∧¬A∧B∧¬Bがこれらより「より矛盾」てことになって
逆に
¬(A∧¬A)と¬(B∧¬B)も同等でない「真」なら
¬(A∧¬A)∨¬(B∧¬B)は「より真」てことになるのかなと
たしか¬P∨¬Q→¬(P∧Q)は排中律も矛盾律もなく証明できたから
¬(A∧¬A∧B∧¬B)は¬(A∧¬A)∨¬(B∧¬B)よりも「より真」みたいな感じで
矛盾や「真」にも優劣というか同等性の違いが出てくるのかもと思った