24/05/08 23:36:06.77 +0jADlNL.net
>>197-198
>今日見つけた怪しい書き込み
ご苦労さまです
早めの証拠保全(下記)
スレリンク(math板:219番)-222
『なぜ数学の非専門家は「選択公理」や「不完全性定理」が好きなのか?』より
1)”哲学者のバートランド・ラッセルが論理学における矛盾を発見”は、ヘン(正しくは素朴集合論)
2)”通常の論理学では回避できないことが判明”も、ヘン(正しくは素朴集合論)
3)”ラッセルによる新しい論理学の構築”も、ヘン(正しくは型理論による集合論)
4)”1931年、クルト・ゲーデルもラッセルの論理学に影響を受け”も、ヘン(正しくは、ヒルベルト・プログラムの研究)
ともかく、『怪しい書き込み』でした
URLリンク(ja.wikipedia.org)
ラッセルのパラドックスとは、素朴集合論において、自身を要素として持たない集合全体からなる集合の存在を認めると矛盾が導かれるというパラドックス。
ラッセルの型理論(階型理論)の目的のひとつは、このパラドックスを解消することにあった
概要
「それ自身を要素として含まない集合」を「M集合」とし、「すべてのM集合を成分とする集合R」を作ってみる。そうすると、「任意の集合X」に関しては、「XはRに含まれる」⇄「XはXに含まれない」という定式が成り立つ。
そして特にX=Rとすれば、「RはRに含まれる」⇄「RはRに含まれない」となり、パラドックスが明示される。
矛盾の解消
公理的集合論によって何をもって集合とするかについての形式的な整備が進められ、素朴(だが超越的)な
R の構成を許容しない体系が構築された。
1.公理的集合論による解消[注 1]
具体的には内包公理を次の分出公理に弱める(ツェルメロによる版)。
(なお現在のZFC集合論では、フレンケルが設定した置換公理から分出公理が導けるため、分出公理自体は公理としていない。)
2.単純型理論による解消[注 2]
略す
3.部分構造論理による解消[注 3]
略す
URLリンク(ja.wikipedia.org)
ゲーデルの不完全性定理 または不完全性定理とは、数学基礎論[1]とコンピュータ科学(計算機科学)の重要な基本定理[2]。(数学基礎論は数理論理学や超数学とほぼ同義な分野で、コンピュータ科学と密接に関連している[3]。) 不完全性定理は厳密には「数学」そのものについての定理ではなく、「形式化された数学」についての定理である
クルト・ゲーデルが1931年の論文で証明した定理であり[5]、有限の立場(英語版)(形式主義)では自然数論の無矛盾性の証明が成立しないことを示す[3][5]。なお、少し拡張された有限の立場では、自然数論の無矛盾性の証明が成立する(ゲンツェンの無矛盾性証明(英語版))
ゲーデルはヒルベルトと同様の見解を持っており、彼が不完全性定理を証明して示したのは、ヒルベルトの目的(「無矛盾性証明」)を実現するためには手段(ヒルベルト・プログラム)を拡張する必要がある、ということだった