純粋・応用数学・数学隣接分野(含むガロア理論)15at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)15 - 暇つぶし2ch375:132人目の素数さん
23/08/14 00:44:03.55 rAsKoTSJ.net
>>347
>ここで、注意すべきは、52枚をシャッフルしたカードの束において
>最上位のカードと、その次のカードは、シャッフル完了時に決まっているということ
100列もそれらの決定番号も出題時に決まってます
>そして、伏せたままの札のみが、確率計算の対象になります
>オープンにしたハートの2の情報は、確率計算のための基礎情報になります
伏せたままの札は固定されているので定数です。
伏せたままの札の予想値が根元事象でその数は51。
どの根元事象も等確率で起こると仮定して確率計算します。
ハートの2が勝てる根元事象の数は2なので勝率は2/51。
箱入り無数目では
100列のうち単独最大決定番号の列はたかだか1列との情報は確率計算のための基礎情報になります
閉じたままの箱の中身も決定番号も固定されているので定数です。決定番号の値を予想する訳ではないので決定番号の期待値を考えても無意味です。
どの列を選択するかが根元事象でその数は100。
ランダム選択なのでどの根元事象も等確率で起こります。
回答者が勝つ(=単独最大決定番号の列以外を選択する)根元事象の数は99以上なので勝率は99/100以上。
>つまり、”伏せたままの札が何か?”というのは、シャッフル完了時に決まっているが
>確率論で予測し計算する対象で、その札をオープンにしたときの勝ち負けの確率を計算するのです
>オープンにしたハートの2の札とは、扱いが全く違うのです
>ここが理解ができないと、「箱入り無数目」に、たぶらかされます
伏せたままの札の予想値が根元事象です。
箱入り無数目ではどの列を選択するかが根元事象です。決して閉じたままの箱の中身の予想値が根元事象ではありません。
ここが理解できないと、箱入り無数目成立は理解できません。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch