純粋・応用数学・数学隣接分野(含むガロア理論)15at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)15 - 暇つぶし2ch271:132人目の素数さん
23/08/13 00:01:39.01 LoA5Mg+B.net
>>228
>どんな可算集合もN(=ω)に写像できる
>順序数ω+ωもωに写像できる

懲りないやつだな

なんで、私がスレ主なのか
まだ分かってないのか?

このスレに、デタラメを書くなということよ
デタラメを書くやつには、天誅が下る

”可算集合もN(=ω)に写像できる”は、可だが
”順序数ω+ωもωに写像できる”って、なんだそりゃ?ww

下記を百回音読せよ!w

URLリンク(ja.wikipedia.org)
順序数
順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数[1]を拡張させた概念である。
順序数の並び方を次のように図示することができる:

0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。
そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。
ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。
その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。
だがそれで終わりではない。無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch