ガロア第一論文と乗数イデアル他関連資料スレ5at MATH
ガロア第一論文と乗数イデアル他関連資料スレ5 - 暇つぶし2ch689:132人目の素数さん
23/07/13 17:40:16.90 9KLQWdwW.net
>>632
つづき
カール・ジーゲルは、新たな多変数複素関数論の対象になる関数がほとんどない、すなわち、理論における特殊関数的な側面は層に従属するものであったことに、不平をもらしたことが知られている。数論に対する興味は、確かに、モジュラー形式の特定の一般化にある。その古典的な代表例は、ヒルベルトモジュラー形式(英語版)やジーゲルモジュラー形式(英語版)である。今日においてそれらは、代数群と関連付けられている。(それぞれ GL(2) の総実代数体のヴェイユ制限(英語版)と、シンプレクティック群である。)それらは、保型表現が解析関数から生じうるものである。ある意味でこれはジーゲルとは矛盾しない。現代の理論はそれ自身の異なる方向性を持つものである。
その後の発展として、超関数 (hyperfunction) の理論や楔の刃の定理(英語版)が挙げられるが、それらはいずれも場の量子論からいくらかの着想を得たものである。その他、バナッハ環の理論など、多変数複素関数を利用する分野がいくつかある。
C^n 空間
最も簡単なシュタイン多様体は、複素数の n-組からなる空間 Cn(複素 n-次元数空間)である。これは複素数体 C 上の n-次元ベクトル空間とみることができて、つまりR 上の次元が 2n である[1]。したがって、集合および位相空間として、C^n は R^2n と等しく、その位相次元は 2n である。
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch