ガロア第一論文と乗数イデアル他関連資料スレ5at MATH
ガロア第一論文と乗数イデアル他関連資料スレ5 - 暇つぶし2ch327:132人目の素数さん
23/07/04 00:25:33.28 SuSSfaDy.net
つづき

点列
ユークリッド空間のように、距離 d の定まった空間における点の列についての収束の概念を、実数の列の収束の概念を拡張して定めることができる。すなわち、点列 (xn)n が点 y に収束するとは、正の実数列 (d(xn, y))n が 0 に収束することである。この概念をさらに一般化して、自然数によって数え上げられるとは限らない「列」とその収束性を一般の位相空間に対して定式化することができる。(#位相空間を参照のこと)

距離 d に関する極限であることを明示するために lim の代わりに d-lim などと書くこともある。

位相空間
点列の収束の概念は、一般の位相空間においても収束先の近傍系をもちいて定式化される。しかし、一般的な位相空間の位相構造は、どんな点列が収束しているかという条件によって特徴付けできるとは限らない。そこで、ネットやフィルターといった、点列を拡張した構成とその収束の概念が必要になる。任意の位相空間 X に対し、X 上で収束している(収束先の情報も込めた)フィルターの全体 CN(X) や、あるいは収束しているフィルターの全体 CF(X) を考えると、これらからは X の位相が復元できる。

圏論
詳細は「極限 (圏論)」を参照
圏 C における図式を「添字圏」 J から C への関手と見なすことにする。
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch