23/06/27 16:11:35.14 vLFbWcBQ.net
h=0の場合 f(x)=(x-a)^2/a^2 Qはある原点中心の円との接点
x=t(≠a)で共通法線があるとすると原点を通るから0=f(t)+t/f'(t)
t-aをTと置くと T^2*2T+a^4*t=0 T^3+a^4/2*T+a^5/2=0
(A+B)^3-3AB(A+B)-A^3-B^3=0だから -3AB=a^4/2
a^5/2=-A^3-B^3=-A^3-(-a^4/2/3/A)^3
6^6*A^6+108a^5A^3-a^12=0
A^3=(-54a^5±√(54^2a^10+6^6a^12))/6^6
=a^5/864*(-1±√(1+16a^2)) B=a^5/864*(-1-±√(1+16a^2))
Tの実解は一つあって T=A,Bの立方根の和でf'(t)=2T/a^2