23/06/20 09:47:28.01 gqKMua26.net
>>581
もう少し詳細に説明すると、Anという事象もEnという事象もとことん細かく場合わけ(分解?)してやると、
複数の事象を要素とする集合と考えることができる。したがって、An∩En というのは、AnとBnに
共通する事象を要素とする集合であり、P(An∩En)というのは、共通する事象の集合としての事象が発現する
確率ということになる。U を要素となりうる事象全体からなる集合とし、それぞれの事象が等確率で
発現するとすれば、
P(An∩En) = #((An∩En)/#U (#は集合の要素の数を表す)
となる。
両面白のカードにx1,x2,x3,,,xn、白黒のカードにy1,y2,...,ynと名前をつけ、更に表裏を識別する
添字として、表は+、裏は-をつける。白黒のカードは表を白、裏を黒として表裏を定義しておく。
そうすると、2枚のカードを取り出して床においたときのカードの状態は { x2+,y5-}のように、
順不同のカードの状態の組み合わせとして場合分けできるので、これを「要素となりうる事象」
として扱えばよい。
したがって、Anは{xi±,xj±} (ただし、i≠j、複合はどちらか一方)という事象の集合と考える
ことができる。同様に、Bnは{xi±、yj±} (i,jは重複してもよい、複合はどちらか一方)、Cnは
{yi±、yj±}(ただし、i≠j、複合はどちらか一方)で表せる事象の集合体と考えることができる。
Enは{xi±,xj±} (つまりAn=An∩Enの要素)と {xi±、yj+}(Bnの要素の一部、つまりBn∩Enの要素)
と{yi+、yj+}(Cnの要素の一部、つまりCn∩Enの要素)からなる集合になっている。