23/06/09 12:35:45.58 5ggcsNFZ.net
>>416-417
よく分かりました。大変詳しくありがとうございました。
すみません、もう一問空間ベクトルの問題を質問させて下さい。
平面に半径1の球面がある。接点をO、反対側をNとする。平面上にOA=3となる点A、OB=4となる点Bを、OA⊥OBとなるようにとる。Nと平面上の点Pを結ぶ直線が球面と交わる点のうちNでない方をP'とする。このときNA'=____、NB'=____である。Pが直線AB上を動くとき、P'は直径____の円を描く。
答えは4/√13、2/√5、10/√61です。
最初の2つの空欄は次のように解きました。
球をx^2+y^2+(z-1)^2=1、点A(3,0,0)、点B(0,4,0)、N(0,0,2)とする。ベクトルOA'=ON+tNA=(3t, 0, 2-2t)として、これを球の式に入れてtを得る。
最後の空欄について、極射影と呼ばれる問題のようなのですが、そもそもP'が円を描くというのがイメージできません。
一応数式で解こうと次のように考えました。
直線ABの式はY=- 4/3 X +4。P'(x,y,z)として、ベクトルOP'=ON+NP'として、(x,y,z)=(0,0,2)+s(X,Y,-2)とし、x,y,zをs,X,Yの式で表し、それを球の式に入れる。するとs= 4/(X^2 + Y^2 + 4)となるので、これを(x,y,z)の式に戻す。
URLリンク(i.imgur.com)
このようになりますが、これをどうすればいいのかが分かりません。
一応知恵袋に同じ問題が上がってて解説もされてるのですが、理解できません。q13168244778です。
長年悩んでいる問題です。お力をお貸し下さい。お願い致します。
440:132人目の素数さん
23/06/09 12:56:25.23 cTDQGYUG.net
そら球面を平面で切ったら直線になるわな
441:132人目の素数さん
23/06/09 13:06:57.43 cTDQGYUG.net
間違った
球面を平面で切ったら円になるだ
PがAB直線上、Nが定点なんだから直線APの通過領域は平面ABN(から直線抜いてN戻したもの)
これで切るんだから円
442:132人目の素数さん
23/06/09 19:44:17.41 CyEsFadg.net
尿瓶チンパポンコツフェチは未だに卒業大学を答えることができず、
東大合格と医学部進学を羨むだけ。
進学校なら東大合格者や医学部進学者なんてOBに枚挙に暇がないくらいいるだろう。
東大合格者って年間3000人、医師は年間9000人が誕生。
別に羨むほどのものじゃなかろうに。
羨ましいなら再受験すればいいのに。
おれの同期は2-3割は再受験組だった。大半は東大卒か京大卒。
歯学部には東大数学科卒もいた。
まあ、医学部にシリツ卒の再受験組はいなかったなぁ。
443:132人目の素数さん
23/06/09 20:34:23.90 PuGZvOUA.net
>>435
専門医資格もとれないやつが、虚勢を張ってもしょうがないだろ。
医師の半数が2つ以上の専門医資格をとってるご時世なんだがなぁw
444:132人目の素数さん
23/06/09 21:20:35.78 n838Suwo.net
>>430
無数にありそう
作図して検証
URLリンク(i.imgur.com)
445:132人目の素数さん
23/06/09 21:22:12.65 n838Suwo.net
>>436
資格商法の鴨にはなりたくないからね。
尿瓶チンパポンコツフェチが逃げまくりの質問
(1)東大合格通知を受け取ったことないの?
(2)シリツ卒なんだろ?
(3)母校に誇りはないの?
446:132人目の素数さん
23/06/09 21:31:08.85 PuGZvOUA.net
>>432
ベクトル使わなくても作図で解ける問題でしょ。
直角三角形NOPにおいて、cos∠N=NO/NP=NO/ √(NO^2+OP^2)=2/√(4+OP^2)
球の中心(NOの中点)をQとすれば、△NQP'はNQ=QP'=1の二等辺三角形になっている。
よって、QからNP'の中点におろした足をHとすれば、NH=NQcos∠N =cos∠N となるので、
NP'=2NH=2cos∠N =2NO/NP= 4/√(4+OP^2)
OP=3を代入すれば NA'=4/√13が、OP=4を代入すればNB'=2/√5が得られる。
>>434が言うように、N,A,Bを含む平面で球を切り取れば円になるので、NP'の最大値が
その円の直径になっている。NP'の最大値はOPが最小値をとるとき、つまりOからABに
下ろした垂線の足がPとなる場合である。作図すればわかるように、このとき、OP=12/5
よって、直径=4/√(4+(12/5)^2) =10/√61
447:132人目の素数さん
23/06/09 21:34:43.49 PuGZvOUA.net
>>438
もし自分が患者だったら、専門医も取れない(取らない)医師に診てほしくない(50代男性/麻酔科)
だとさw
俺も同感だよ。
448:132人目の素数さん
23/06/09 22:28:23.28 pnncaRJb.net
>>435
アンタはいつまで経っても東大合格や医科歯科卒業を証明できず自称と言われ相手にされず発狂してるだけ
おまけに脳内非専門医と馬鹿にされてさらに発狂w
449:132人目の素数さん
23/06/09 22:32:37.53 pnncaRJb.net
>>438
(1)ここは東大卒しかいないから脳内で受け取ったであろうアンタ以外は当然受け取ったよ
だからアンタが一番低学歴
(2)東大卒に決まってんだろ
(3)もちろん母校に誇りはあるしアンタみたいな脳内医科歯科はリアル医科歯科の面汚しだから迷惑でしかない
450:132人目の素数さん
23/06/10 06:28:32.62 YAOUdjQQ.net
東大合格通知の書式すら知らなかった椰子が東大卒とは思えんね。
451:132人目の素数さん
23/06/10 08:00:34.03 1bz4u8Li.net
>>443
じゃあさっさと合格通知書出せよw
どうせ脳内なんだろ?
452:132人目の素数さん
23/06/10 09:18:48.88 YAOUdjQQ.net
>>440
俺は底辺シリツ卒の医者にかかりたくないな。
もちろん、手技が必要な外科系とか、内科でもカテや内視鏡をやっている医師は卒業大学は気にしないが。
CSの話だが、痛くて抜いてくれと患者に言われてファイバー抜去後にやっぱり最後までやってくれと言われて困った専門医が
内視鏡バイトの俺に続きをやってくれと依頼してきたこともあったなぁ。浸水法でTCS完遂。
バイト先で職員やその家族の検査を例年依頼されると嬉しくはあるけれど、
見逃しを減らすためには
「いろんな人にやってもらうのがいいんですよ」
と言っている。
懇意なナースには「女性もそうらしいですよ」と親父ジョークを追加している。
453:132人目の素数さん
23/06/10 09:20:15.98 YAOUdjQQ.net
>>444
東大の合格通知って公印もなくて随分と簡素だなぁと思ったので記憶しているよ。
健康診断の受診票も兼ねていたハガキ大の書式だったな。
あんたの頃はどうだったの?
454:132人目の素数さん
23/06/10 09:22:17.69 YAOUdjQQ.net
>>444
隗より始めよ
455:132人目の素数さん
23/06/10 09:23:52.46 2L0Gqg+O.net
>>445
手技を売り物にしてるんじゃおまえが毛嫌いするシリツ卒と一緒じゃんw
アホやw
456:132人目の素数さん
23/06/10 10:21:37.01 jpJCgg/1.net
>>445
完全なるスレチ
そんな内容は医者板で書けばいいのに何でここに常駐してるの?邪魔なんだけど
457:132人目の素数さん
23/06/10 10:50:13.43 zImsqMNK.net
>>446
別にアンタの学歴なんか興味ないよ
脳内って分かりきってるし
でもそんなに主張したいなら合格通知書出して黙らせれば?って提案してるだけ
優しいでしょ?w
>>449
もちろん医者板では相手にされないからですw
だから素人相手ならとタカをくくっていたようですがスレタイも読めないアホは隠せないようですね
458:132人目の素数さん
23/06/10 10:54:14.37 zImsqMNK.net
尿瓶ジジイっていちいち言い回しが古すぎるんだよな
本当に21世紀人なのかって
何十年も引きこもりでPCの前で発狂してるだけだろ
459:132人目の素数さん
23/06/10 11:10:43.79 TOcQwApg.net
>>447
東大合格アピールに必死なのは貴方だけです
460:132人目の素数さん
23/06/10 11:57:16.00 QiL3iDit.net
>>445
総スカン食らって馬鹿にされるのがそんなに楽しいか尿瓶ジジイw
461:132人目の素数さん
23/06/10 14:17:14.47 xpfF5v3P.net
方程式x^2+(4sinx)x+1=0…(*)について、実数xが(4sinx)^2-4>0の範囲を動くとき、(*)を満たすxが何個存在するか答えよ。
462:132人目の素数さん
23/06/10 23:16:35.94 2L0Gqg+O.net
本物の医師だとしても、還暦過ぎてこんなとこでドヤってるのもいかがなものか。
私生活がよっぽど荒んでるんだな。
たぶん独身だろ?
463:132人目の素数さん
23/06/11 00:49:09.48 DHznLJDI.net
胆汁ドレナージなんて平気で言う医者がいるかよ
464:132人目の素数さん
23/06/11 14:21:58.64 bx78LKG1.net
以下の条件(a)(b)を同時に満たす正整数nが存在することを示せ。
(a)nを10進法表記したときの下3桁は998である。
(b)nは33で割り切れる。
465:132人目の素数さん
23/06/11 14:30:56.89 FgWnLz2S.net
他スレから転載
711 名前:132人目の素数さん Mail: 投稿日:2023/06/02(金) 01:51:47.00 ID:uTXIPWym
(2022年11月の東進の第103回数学コンクールの問題)
三角形ABCの重心Gに対し、
∠GAB=α、∠GBC=β、∠GCA=γ
とするとき、不等式
sin α+sin β+sin γ≦3/2
が成立することを示せ。 (問題ここまで)
お願いします。三角形の辺の長さをBC=a,CA=b,AB=cとし
重心の性質を使うなどして、
sin α=1/(2c)×√(4b^2c^2-(b^2+c^2-a^2)^2)/(2b^2+2c^2-a^2)
などと、表すことは出来たのですが、この形がそもそも重すぎて、
ここから題意を証明できるのかが分からず…。
図形的な方法も模索したのですが、分からず…。
詳細な証明が書くのが大変だと思うので、ざっと方針だけでもご教授お願いします。
466:132人目の素数さん
23/06/12 05:02:14.27 pIjtEDF6.net
>>456
胆管ドレナージ、胆道ドレナージ、肝切除断端からのドレナージを含めた呼称は胆汁ドレナージでいいね。
467:132人目の素数さん
23/06/12 05:05:35.65 pIjtEDF6.net
尿瓶チンパポンコツフェチが逃げまくりの質問
(1)東大合格通知を受け取ったことないの?
(2)シリツ卒なんだろ?
(3)母校に誇りはないの?
医師板の内視鏡スレにまででかけて行ってスレ荒らしをしている
尿瓶チンパポンコツフェチって哀れだなぁ。
東大合格通知の書式すら知らなかったから、東大合格者ではないな。
この質問も追加していいな。
(4)どこの国立を落ちたの?
468:132人目の素数さん
23/06/12 05:15:19.67 pIjtEDF6.net
>>451
鳩の巣原理は昔は部屋割論法と呼ばれた。
もっと昔は引き出し論法と呼ばれたという。
どの呼称で呼ばれてもなんのことかわかるのかが大切。
CF、GTFの記載をみてCS,EGDのことだとわからないと昔のカルテが読めないことになる。
まあ、MS(-)がMorning Stiffnessなしの意味なのには閉口した。
Aspiration PneumoniaをAPと略されるとAngina Pectorisと混乱する(まあ、いまはACSと書く医師が多いけど)。
APだとAtypical Pneumoniaとも間違える。
ちなみに、量子物理学の世界では鳩の巣原理も通用しないという。
469:132人目の素数さん
23/06/12 05:24:27.56 pIjtEDF6.net
>>455
いや、週2~3日働いて、あとは伴侶に手伝ってもらって、Youtubeでみたレシピを真似て料理をしている。
生クリームと蜂蜜をつかった高級食パンを焼いたり、低温調理での鮭のコンフィを作るとか楽しいぞ。
職場の料理好きのナースに調理画像をみせたりしている。
最近の作品は2色のスフレオムレツ画像。メレンゲを手動でつくると運動不足解消に( ・∀・)イイ!!
うな丼にみせかけた茄子料理をみせたらうな丼に見えるといってくれたナースもいたが、
「茄子でしょ」と即、指摘したナースもいた。聞いたら自分も作ったことがあるという。
470:132人目の素数さん
23/06/12 05:38:54.00 pIjtEDF6.net
>>457
整数分野は実験科学
便利な実験道具を使って答を探る
f=\(x){
n=33*x
n%%1000==998
}
i=1
flg=f(i)
while(!flg){
i=i+1
flg=f(i)
}
i*33
> i*33
[1] 19998
471:132人目の素数さん
23/06/12 05:43:21.61 pIjtEDF6.net
>>463
おまけ
> ans
[1] 19998 52998 85998 118998 151998 184998 217998 250998
[9] 283998 316998 349998 382998 415998 448998 481998 514998
[17] 547998 580998 613998 646998 679998 712998 745998 778998
[25] 811998 844998 877998 910998 943998 976998 1009998 1042998
[33] 1075998 1108998 1141998 1174998 1207998 1240998 1273998 1306998
[41] 1339998 1372998 1405998 1438998 1471998 1504998 1537998 1570998
[49] 1603998 1636998 1669998 1702998 1735998 1768998 1801998 1834998
[57] 1867998 1900998 1933998 1966998 1999998 2032998 2065998 2098998
[65] 2131998 2164998 2197998 2230998 2263998 2296998 2329998 2362998
[73] 2395998 2428998 2461998 2494998 2527998 2560998 2593998 2626998
[81] 2659998 2692998 2725998 2758998 2791998 2824998 2857998 2890998
[89] 2923998 2956998 2989998 3022998 3055998 3088998 3121998 3154998
[97] 3187998 3220998 3253998 3286998
472:132人目の素数さん
23/06/12 05:50:10.52 pIjtEDF6.net
>>452
進学校なら東大合格者や医学部進学者なんてOBに枚挙に暇がないくらいいるだろう。
高校の同窓会にいくといつも同業者が集まって業界ネタの雑談になる。
東大合格者って年間3000人、医師は年間9000人が誕生。
別に羨むほどのものじゃなかろうに。
羨ましいなら再受験すればいいのに。
おれの同期は2-3割は再受験組だった。大半は東大卒か京大卒。
歯学部には東大数学科卒もいた。
まあ、医学部にシリツ卒の再受験組はいなかったなぁ。
473:132人目の素数さん
23/06/12 05:51:08.76 pIjtEDF6.net
発展問題
以下の条件(a)(b)を同時に満たす正整数nを小さい順に並べるとき2023番めにくる数字を求めよ。
(a)nを10進法表記したときの下3桁は998である。
(b)nは33で割り切れる。
474:132人目の素数さん
23/06/12 06:20:49.17 pIjtEDF6.net
>>448
上皇の執刀医は手技を評価された日大卒の医師である。
最近は早期胃がんの存在診断�
475:ヘAIの方が優れているというデータが出されている。 でもその存在部位に内視鏡を進めるのは術者の腕。 薬屋の売り子のような業種はAIに駆逐されるであろうな。 俺はセミリタイアの逃げ切り世代。
476:132人目の素数さん
23/06/12 06:44:38.14 pIjtEDF6.net
>>454
実数解は存在しない。
(*)の左辺を作図してみた。
URLリンク(i.imgur.com)
477:132人目の素数さん
23/06/12 07:01:26.05 pIjtEDF6.net
>>456
カップ麺をカップヌードル、宅配便を宅急便と呼ぶみたいなものだろう。
備忘録を忘備録と呼ぶのは無教養。
備忘録として使っていると投稿されているのに、
忘備録と書いてレスしたのは、東大非合格者。
478:132人目の素数さん
23/06/12 07:42:04.51 cd8Qj0tP.net
>>469
尿瓶ジジイ発狂止まらないね
どうせ医者板では全く支持されないからここで喚いてるだけだろうがここでも医者扱いなんか到底されそうにないみたいだね
アホ隠せてないからw
479:132人目の素数さん
23/06/12 09:07:12.62 uNjK734R.net
>>467
結局、おまえが軽蔑してるシリツ卒と同じで、おまえも手技しか能がないんだな(それも自己評価でしかないが)。だから専門医資格もとれない。
やっぱりおまえは頭が悪いわw
受験で点数とれても馬鹿は馬鹿w
480:132人目の素数さん
23/06/12 12:01:57.09 NxXfgFOA.net
>>459
胆汁ドレナージなんてどこの教科書に書いてあるの?
もうこの時点で医者なんて大嘘ってことくらい医者なら分かる
アンタみたいなアホが高校生なら騙せると思ったら大間違いだぞw
専門医名乗ったら尚更分からないからフリーって設定なんだろ?
481:132人目の素数さん
23/06/12 13:52:23.99 RIVwSZ0b.net
>>469
このスレでは必死なのになんで面白い質問スレで叩かれたときはあっさり引き下がるの?
482:132人目の素数さん
23/06/12 14:20:31.17 hoMLT5VV.net
>>459-469
こいつ、何で数学板で必死こいで医者アピールしてんの?普通医者ってこんな時間に書き込みとかしないと思うんだけど
傍から見てるとただのニートにしか思えないんだが。リアルでうまく行ってない残念な奴ってのはわかる
483:132人目の素数さん
23/06/12 14:42:44.32 RIVwSZ0b.net
>>467
立派な私立医がいるものですね
484:132人目の素数さん
23/06/12 15:13:13.47 RIVwSZ0b.net
x^2+(4sinx)x+1=0 x>0とする
2mπ≦x≦(2m+1)πのとき 左辺>0
3/2*π≦xのとき x≧3/2*π>3/2*3>4 左辺≧x^2-4x+1=(x-2)^2-3>0
π<x<3/2*πのとき sinx=-sin(x-π)>-(x-π) 左辺>x^2-(x-π)x+1=πx+1>0
485:132人目の素数さん
23/06/12 15:36:26.51 ASVkScYx.net
>>475
御謙遜するヤブも大概ですな
486:132人目の素数さん
23/06/12 15:38:14.08 loEIwldi.net
これ証明してください
0=∞=1
487:132人目の素数さん
23/06/12 15:51:49.31 NxXfgFOA.net
>>467
で、アンタはいつになったら執刀できるんだ?w
488:132人目の素数さん
23/06/12 18:28:30.72 2zpeBLbB.net
xがすべての実数を動くとき、(x^3+3x-1)^10の最小値を求めれば( ア )である。
489:132人目の素数さん
23/06/12 19:00:20.55 yoZmzIUl.net
p+q=(p-q)^3
を満たす素数p,qをすべて求めよ。
490:132人目の素数さん
23/06/12 20:51:36.53 eXsl9cVj.net
x^3+3x-1=f(x) f(0)f(1)=-1*3<0 f(x)=0なるxが(0,1)にある
2q=(p-q)^3-(p-q)=t^3-t=t(t^2-1)=(t-1)t(t+1) t=p-q>0
t=1,2,3のときq=3,p=5 t=2,3,4のとき不適
491:132人目の素数さん
23/06/12 21:25:43.44 eXsl9cVj.net
☓ t=1,2,3のときq=3,p=5
◯ 右辺=1*2*3のときq=3,q=5
492:132人目の素数さん
23/06/12 23:53:50.64 aLcemu1j.net
数学科のひとは
15度の三角比も覚えていますか
493:132人目の素数さん
23/06/13 00:01:51.41 ESPpoeny.net
>>472
>専門医名乗ったら尚更分からないからフリーって設定なんだろ?
ああ、なるほど。
専門医かどうかっていう質問をトラップだと思って資格なしってことにしたのかw
やっぱ偽医者だなw
494:132人目の素数さん
23/06/13 06:09:16.92 r5XI8VQ/.net
尿瓶ジジイ、医者板で例の如く暴れる→一部からツッコまれダンマリ→てんで相手にされなくなる→自分の建てたスレだけで発狂→またツッコまれてダンマリ→素人なら通用すると思い仕方なくここで暴れる→当然スレチで総スカン→自分になんか言ってくるやつを全員同じと思い発狂
495:132人目の素数さん
23/06/13 14:19:46.16 85M+FzbF.net
皆さんに質問です
ご自身の子供が大学に行くとして、どこまでなら許せますか?
東大・京大(医学部以外)
東工大・一橋
地方旧帝大(医学部以外)
その他国立大学(医学部以外)
東大理三・京大医
地方旧帝大の医学部・医科歯科
その他国立医学部
早慶
MARCH
関関同立
私大医学部
496:132人目の素数さん
23/06/13 14:44:46.73 85M+FzbF.net
今年の東大理系数学についてどう思いますか?
合格者平均点すら55/120だったそうです
497:132人目の素数さん
23/06/13 15:26:53.88 8dVY4sEu.net
△ABCの面積をSとおく
AGとBCの交点をLとする
sinα = S/( AL×AB )
である
a²+b²+c²=1としてよい
a²=(u+1)/3, b²=(v+1)/3, c²=(w+1)/3
とおく
中線定理より
4AL² + 4BL² = 2AB²+2AC²
4AL² = 2b²+2c²-a²
= 2 - 3a²
=1-u
であるから
sinα = S/( AL AB)
= 2√3S/( √(1-u) √(1+w) )
である
ここでヘロンの公式より
4S = √( -a⁴-b⁴-c⁴+2a²b²+2b²c²+c²a²)
= √(1-2(a⁴+b⁴+c⁴)
= √(1-2/9( (u+1)² + (v+1)²+(w+1)²))
= √(1/3 -2/9(u²+v²+w²))
= (1/3)√(3 -2(u²+v²+w²))
だから
sinα = √3/6√(3 -2(u²+v²+w²))、√((1-u)(1+w))
であり同様にしてsinβ、sinγを求めて
sinα+sinβ+sinγ
= √3/6√(3 -2(u²+v²+w²)) × ( 1/√((1-u)(1+w))
+ 1/√((1-v)(1+u))+1/√((1-w)(1+v)) )
である
u,v,wの変域は
-1<u,v,w<1、u²+v²+w²≦3/2...(❇︎)
に含まれる
A=(1+v)(1-w), B=(1+w)(1-u), C=(1+u)(1-v),
D=3-2(u²+v²+w²)
とすれば
sinα+sinβ+sinγ
=√3/6( √(D/A)+√(D/B)+√(D/C) )
と書ける
498:132人目の素数さん
23/06/13 15:27:21.73 8dVY4sEu.net
また凸不等式より
√(D/A)+√(D/B)+√(D/C)≦√3√( D/A+D/B+D/C )
である
よって
sinα+sinβ+sinγ
≦ (1/2)√( D/A+D/B+D/C )
そこで
F = D/A+D/B+D/C
が(u,v,w) = (0,0,0)で最大値を取る事を示す
e⃗を(❇︎)を含む平面πに含まれる単位ベクトルとしt∈ℝに対してOP⃗=te⃗となるPをとってP(t)と定めればP(t)は関数ℝ→πを与える
この単射と座標関数u,v,wを合成したものをu̅,v̅,w̅などとする、A〜Dに対してもA̅〜D̅とする
D̅/C̅はℝ上の関数として 定数α,β,γを用いてα/(1+u̅) + β/(1-v̅) + γと表されるがここで
D = 3-4(u²+uv+v²)
であるから
α=( 3-4-4v̅(u=-1)+4v̅(u=-1)²)/(1-v̅(u=-1))
= - (1-2v̅(u=-1))²/(1-v̅(u=-1))
≦ 0
β=( 3-4-4u̅(v=1)-4u̅(v=1)²)/(1+u̅(v=1))
= - (1+2v̅(v=1))²/(1+u̅(v=1))
≦ 0
であるからD̅/C̅はℝ上の関数としてt=0を含む定義域において上に凸である
D̅/A̅、D̅/B̅においても同様であるから関数D̅/A̅+D̅/B̅+D̅/C̅は上に凸な関数である
e̅はπの任意の単位ベクトルであったからD/A+D/B+D/Cは上に凸な関数であり、極大値は高々一点である
ここで原点において
d(D/C) = d(D)/C + D/C (-1/u) du + D/C (1/v)dv
= -3du + 3dv
でd(D/A), d(D/B)についても同様だから原点においてd(D/A+D/B+D/C) = 0である
よって凸性と合わせて主張は示された□
499:132人目の素数さん
23/06/13 15:31:59.09 8dVY4sEu.net
あ、凸性はまだ示せてないな
しかし
・原点通る任意の直線上で凸
・原点でgrad = 0
で原点で最大は間違いないからまぁよし
500:132人目の素数さん
23/06/13 16:30:33.35 85M+FzbF.net
>>491
自己満やらなくていいんで高校範囲で解きなさい
ここはあなたのオナニーを披露する場所ではありません
高校生の気持ちを考えなさい
501:132人目の素数さん
23/06/13 16:31:32.10 85M+FzbF.net
f(x)=(x-sinx)/x^3に対し、極限
lim[x→0] f(3x)
を求めよ。
502:132人目の素数さん
23/06/13 16:32:02.08 85M+FzbF.net
>>493
美しい誘導でしょう?
503:132人目の素数さん
23/06/13 17:40:21.95 GevDoBDQ.net
ばかだなぁ
504:132人目の素数さん
23/06/13 18:45:45.87 z+SivvI1.net
g(x)=sinx-x+x^3/6=g(x)-g(0)=xg'(t)
=x(cost-1+t^2/2)=xt(cosu-1+u^2/2)'=xt(-sinu+u)=xtu(-sinv+v)'
=xtu(-cosv+1)=-2xtu(sin(v/2))^2 0<v<u<t<x
(x^3-g(x))/x^3→1(x→0)
505:132人目の素数さん
23/06/14 12:05:42.53 d6UtaULT.net
iを虚数単位とする。
サイコロを3回振り、出た目を順にa,b,cとする。
(a+bi)^c=p+qiとするとき、p≧qとなる確率とp≦qとなる確率の大小を比較せよ。
506:132人目の素数さん
23/06/14 12:49:04.19 yanMMQ/P.net
三角数のうち、1≡mod 9で表せるものは、その
差を拾うと9の倍数になるのは当たり前ですが、
1
3 6
10
15 21 36/2
28
36 45 81/3
55
66 78 144/4
91
という法則性はどう式に表せば良いですか
507:132人目の素数さん
23/06/15 12:33:56.81 MbClSssF.net
aは0でない整数、b,cは整数とする。またa,b,cを同時に割り切る整数は1のみであるとする。
f(x)は整数係数の3次多項式で、α={-b+√(b^2-4ac)}/2aに対して、f(α)=0であるという。
このようなf(x)をすべて決定せよ。
508:132人目の素数さん
23/06/15 12:38:53.74 sYUrK+kT.net
自作は気が変♪
どあほー、どあほー♪
自演(こだま)がかえるよー♪
どあほー、どあほー♪
イナさんはレスをする♪
トンチンカン、トンチンカン♪
気立てのいいイナさん♪
トンチンカン、トンチンカン♪
計算厨もレスをする♪
アンポンタン、アンポンタン♪
数学そっちのけ♪
アンポンタン、アンポンタン♪
じさくーじーさくー、もうしらんふり♪
じさくーじーさくー、2人にレスもせず♪
509:132人目の素数さん
23/06/15 12:38:59.11 sYUrK+kT.net
自作は気が変♪
どあほー、どあほー♪
自演(こだま)がかえるよー♪
どあほー、どあほー♪
イナさんはレスをする♪
トンチンカン、トンチンカン♪
気立てのいいイナさん♪
トンチンカン、トンチンカン♪
計算厨もレスをする♪
アンポンタン、アンポンタン♪
数学そっちのけ♪
アンポンタン、アンポンタン♪
じさくーじーさくー、もうしらんふり♪
じさくーじーさくー、2人にレスもせず♪
510:132人目の素数さん
23/06/15 12:39:04.00 sYUrK+kT.net
自作は気が変♪
どあほー、どあほー♪
自演(こだま)がかえるよー♪
どあほー、どあほー♪
イナさんはレスをする♪
トンチンカン、トンチンカン♪
気立てのいいイナさん♪
トンチンカン、トンチンカン♪
計算厨もレスをする♪
アンポンタン、アンポンタン♪
数学そっちのけ♪
アンポンタン、アンポンタン♪
じさくーじーさくー、もうしらんふり♪
じさくーじーさくー、2人にレスもせず♪
511:132人目の素数さん
23/06/15 14:37:55.83 YQioOfnb.net
進学校なら東大合格者や医学部進学者なんてOBに枚挙に暇がないくらいいるだろう。
東大合格者って年間3000人、医師は年間9000人が誕生。
別に羨むほどのものじゃなかろうに。
羨ましいなら再受験すればいいのに。
おれの同期は2-3割は再受験組だった。大半は東大卒か京大卒。
歯学部には東大数学科卒もいた。
まあ、医学部にシリツ卒の再受験組はいなかったなぁ。
512:132人目の素数さん
23/06/15 14:40:55.08 YQioOfnb.net
東大通知には公印なしを知らないのは東大合格者ではないわな!
入学手続での健康診断と医師面接をうけたゴム印は押されるけど。
尿瓶チンパポンコツフェチが逃げまくりの質問
(1)東大合格通知を受け取ったことないの?
(2)シリツ卒なんだろ?
(3)母校に誇りはないの?
(4)どこの国立を落ちたの?
513:132人目の素数さん
23/06/15 14:52:46.85 a8sOsLpt.net
じゃあさっさとご自慢の東大合格通知書()出せよw
どうせ脳内なんだろw
514:132人目の素数さん
23/06/15 14:54:33.40 qocfsYQJ.net
尿瓶ジジイはもう壊れたレコードみたいに何度も同じこと言うしか能がないみたいだね
こりゃチンパンジー以下だわw
ここは東大卒しかいないから尿瓶ジジイが脳内学歴でも一番無能なのに気付かない馬鹿w
515:132人目の素数さん
23/06/15 15:06:23.92 oFoQo22g.net
三時のおやつに解答。
>>497
Pr[p>=q]=84/216
Pr[p<=q]=144/216
なので後者の方が大きい。
516:132人目の素数さん
23/06/15 15:07:31.91 YQioOfnb.net
速攻で発狂しているのが哀れ
東大通知には公印なしを知らないのは東大合格者ではないわな!
入学手続での健康診断と医師面接をうけたゴム印は押されるけど。
尿瓶チンパポンコツフェチが逃げまくりの質問
(1)東大合格通知を受け取ったことないの?
(2)シリツ卒なんだろ?
(3)母校に誇りはないの?
(4)どこの国立を落ちたの?
517:132人目の素数さん
23/06/15 15:15:16.13 ItSUdDbE.net
>>508
合格通知書()出せないチンパンジーがいくら喚いても誰も相手にされないのが哀れだねw
518:132人目の素数さん
23/06/15 15:23:39.26 SdRTaI0o.net
π/4<c*arg(a+ib)<5π/4 になるのは
π/16<arg(a+ib)<π/8のとき cが4,5,6のとき
π/8<arg(a+ib)<π/4のとき cが2,3,4,5のとき
π/4<arg(a+ib)<3π/8のとき cが1,2,3のとき
3π/8<arg(a+ib)<π/2のとき cが1,2,6のとき
(a,b)=(6,1)のとき cが5,6のとき
arg(6+i)<π/16<arg(5+i)だから(a,b)=(6,1)以外では虚部>実部のが多い
それで(a,b)=(6,1)の不足分を補えるので合わせて虚部>実部のが多い
519:132人目の素数さん
23/06/15 18:10:48.14 NY7gLE9s.net
ID:YQioOfnb=尿瓶ジジイの知ったか医療をとくとご覧あれw
252 卵の名無しさん (ワッチョイ 3758-Sncr [14.13.16.0 [上級国民]])[sage] 2023/06/15(木) 15:00:31.91 ID:r9gVLzDE0
悪性高熱と違ってサンドラマランは高パ薬を中止する必要がないので対処が楽。
ダントレンの蒸留水での溶解が面倒だけどね。
257 卵の名無しさん (スッププ Sdf2-32in [49.105.100.138])[sage] 2023/06/15(木) 16:45:06.57 ID:eoOYp9Vxd
>>252
なんだ?サンドラマランって
新しいヒーローの名前?
もしかして・・もしかしてだけど
サンドローム・マラン(Syndrome Malin)のこと言ってる?他の医者が言ってるの聞いて
そんな風に聞こえちゃったのかな?
医者だったらそんな言い間違い絶対しないもんね。お前の好きな漫画のキャラクターの名前か何かかな?w
258 卵の名無しさん (JP 0H03-32in [202.253.111.210])[sage] 2023/06/15(木) 17:32:39.02 ID:vW6q/6JzH
>>252
後、高パ薬って何?もしかして抗パーキンソン病薬のこと?
そうだとしたら、悪性高熱症で止めるとか何も病態把握してなくて草だわ
麻酔科やってるとか名乗るぐらいならマジで適当な事言うなよ
頭悪い癖に知ったかすんなボケ
520:132人目の素数さん
23/06/15 18:14:30.28 HnHJ45uG.net
>>510
素晴らしいです
私の用意した解答と同じ方針です
521:132人目の素数さん
23/06/15 21:35:30.36 4/CSLoLM.net
>>511
詳しくは、わからんが
この自称医者が全く知識が無いのに知ったかぶりする奴ってのは理解した
まあ、数学の能力的にも東大じゃないだろうな間違いなく
522:132人目の素数さん
23/06/15 23:14:28.73 sYUrK+kT.net
>>504
俺は合格通知がどうだったかなんて全然覚えてないぞ。とっくに捨てちゃってるし。
そんなもの覚えてるほうがどうかしてんじゃないか?w
523:132人目の素数さん
23/06/15 23:15:32.34 sYUrK+kT.net
学位記はさすがにキープしてるけど、合格通知なんて持っててもまったく無意味だからな。
524:132人目の素数さん
23/06/16 06:03:24.28 tkqktegb.net
>>514
健康診断の受診票を兼ねていたのくらい覚えてない?
525:132人目の素数さん
23/06/16 06:06:59.77 tkqktegb.net
進学校なら東大合格者や医学部進学者なんてOBに枚挙に暇がないくらいいるだろう。
東大合格者って年間3000人、医師は年間9000人が誕生。
別に羨むほどのものじゃないけどな。
526:132人目の素数さん
23/06/16 07:01:27.30 mFyh7Amr.net
>>517
お前凄いな
こんなに馬鹿にされてるのにまだ誰かが羨んでくれてると思ってるんだな
流石は上級国民様(笑)ですな
527:132人目の素数さん
23/06/16 07:40:08.17 AjFKCJZv.net
>>511
しかし、医者板って怖いな
間違いが見つかったら親の仇のように攻撃されるんだな
そんな場所で適当な書き込みしてるコイツのメンタルもヤバいが
528:132人目の素数さん
23/06/16 07:42:23.18 vdbZqsgI.net
>>516
全然覚えてないよ。何十年も経って覚えてるほうがむしろ不自然。
設定に穴があるよ、君w
529:132人目の素数さん
23/06/16 07:48:31.55 vdbZqsgI.net
>>517
医学板では医学の知識がデタラメだということがバレバレ、
このスレでは高校数学のの能力すら全くないことがバレバレ。
それでも東大合格だの医師だのと詐称し続けられる人は滅多にいない。
その図太いメンタルを羨む人はいるかもなw
530:132人目の素数さん
23/06/16 08:18:49.55 Vc8aixok.net
>>517
アンタは発言がアホすぎてそのどちらでもないだろって言ってるんだよw数学板としても医者板としても無能の烙印押されてんだから
>>519
尿瓶ジジイが自分の建てたスレで脳内医者してるから誰かがツッコんでるだけだよ
他のスレじゃことごとくスルーされるから自分の建てたスレでしか発狂できないw
531:132人目の素数さん
23/06/16 12:54:46.78 kb0YYbl2.net
xyz空間の4点A(1,2,3),B(2,3,4),C(4,4,4),D(2,1,-2)を4頂点とする四面体ABCDの表面および内部で、領域z≧0に含まれる部分の体積を求めよ。
532:132人目の素数さん
23/06/16 13:08:44.36 kb0YYbl2.net
整数p,qを用いて
a[1]=2,a[2]=3
a[n+2]=p*a[n+1]+q*a[n]
で定められる数列で、定数数列でないものを考える。
以下の条件を満たすようなp,qの例を一組挙げよ。
【条件】
任意のnに対して、a[n]は5でも7でも割り切れない。
533:132人目の素数さん
23/06/16 16:15:00.77 pJf+62X8.net
>>439
ありがとうございます。円がNを通るということが分かったらなんとかイメージできました。
しかし、やはり難しい問題だと思います。
534:132人目の素数さん
23/06/16 17:57:55.99 0YpoRvUb.net
a,b,cをa+b+c=3である正の実数とするとき、
(1+1/ab)(1+1/bc)(1+1/ca)
の最小値を求めよ。
535:132人目の素数さん
23/06/16 18:05:58.46 h/NG2VNg.net
>>517
これで自称東大だの医者?w
724 卵の名無しさん (ワッチョイ 3358-8TD4 [14.13.16.0])[sage] 2022/10/05(水) 13:30:27.35 ID:rczEbvNg0
I told my colleage nureses that I have such allergy to beauties that I feel itchy everywhere when I work with them.
Ahahahahahah
>colleage
>nureses
920 卵の名無しさん (JP 0H52-BsRZ [217.138.212.122 [上級国民]])[sage] 2023/03/24(金) 15:55:12.52 ID:sCq5Ou+HH
先々週のseptick shockの患者、懇意なナースに聞いたらもう食事が始まっていますよと教えてくれた。
夜遅くまで麻酔をかけたのが報われた感じで気分が( ・∀・)イイ!!
報酬も良かったし
>septick shock
536:132人目の素数さん
23/06/16 19:36:49.15 M5RLkQ3T.net
>>524
p=0, q=1
537:132人目の素数さん
23/06/16 20:34:26.27 W124QqXZ.net
>>526
a,b,cをa+b+c=3である正の実数とするとき、
(1+1/ab)(1+1/bc)(1+1/ca)
≥2/√ab ×2/√bc × 2/√ca
=8/abc
≥8/{(a+b+c)/3}³
=8
答え a=b=c=1の時, 最小値8。
538:132人目の素数さん
23/06/16 21:50:14.28 yAXsgoMd.net
医師になるのは、めちゃくちゃ簡単だよ。
どんな馬鹿医大�
539:ナも国家試験の合格率7割以上はあるし、自治医大以上ならほぼ100%。 弁護士の場合は難関ロースクールを卒業しても、国家試験を通るのは10%程度。 医師になるには金と時間がかかるが、試験自体は簡単。 うちは従兄弟三人医師になったが、英検二級すら落ちるレベルの頭だからね。 医師国家試験の合格率ランキング見てみ。 一番低い杏林大学ですら、79.4%。 奈良県立大以上の偏差値の25校は95.0%超え。 これのどこが難関試験なの? 医学部に学費を支払える財力のハードルが高いだけで、医師にはバカでもなれる。 弁護士、司法書士、会計士、英検1級あたりは、バカには絶対に無理。 まとめると 医師国家試験→バカでも受かる。しかし、医学部6年間で1,000万以上かかる学費のハードルが高い。 司法試験→ロースクール卒業しても、合格できるのはごく一部。非常に難関な試験。 司法書士→ロースクールに行かなくても受験できるが、難易度は司法試験並み。 英検1級→英語がずば抜けて優秀でないと合格できない。英語の偏差値100必要。(実際にはそんな偏差値はないが) 会計士→おそらく、最難関試験か。会計大学院修了者の合格率は7.6%しかない。 不動産鑑定士→鑑定理論が地獄。単体の科目としては最難関の一つ。経済学などは公務員試験より簡単か。
540:132人目の素数さん
23/06/17 01:39:40.79 hSn/JHdb.net
だから何なの?
541:132人目の素数さん
23/06/17 05:32:40.12 WzWb1lXA.net
>>514
公印もない簡素な通知だったので記憶している。
542:132人目の素数さん
23/06/17 05:36:19.16 WzWb1lXA.net
進学校なら東大合格者や医学部進学者なんてOBに枚挙に暇がないくらいいるだろうに。
東大合格者って年間3000人、医師は年間9000人が誕生。
別に羨むほどのものじゃないけどな。
尿瓶チンパポンコツフェチは羨ましくて仕方ないみたいだぞ。
業界ネタも書けないのに内視鏡スレとか当直スレを荒らして憂さ晴らししている。哀れな奴だぜ。
543:132人目の素数さん
23/06/17 05:39:54.72 WzWb1lXA.net
>>520
東大受験の漢文は
糟糠の妻は堂より下さず
だったのも覚えている。
試験に出る古文漢文で読んだことがあったのでラッキーだったと記憶に残っている。
544:132人目の素数さん
23/06/17 06:51:31.64 5+a9b82q.net
>>530
わざわざこんなとこに、こんな内容書いてるってことはこいつ例の自称医者だろ
>>532-534と同一人物だろ
ボコボコにされてイラついて書き込んでるんだろうがコンプレックス丸わかりだぞ
自分が医者じゃないから医者に恨みがあるとかなんでしょどうせ
545:132人目の素数さん
23/06/17 10:03:18.73 hSn/JHdb.net
>>532
18歳の受験生が公印とか気にするかよ。
嘘つきw
546:132人目の素数さん
23/06/17 10:04:53.08 hSn/JHdb.net
>>533
そういうおまえは羨ましいから医者や東大合格を騙ってんだろ?
さもしい根性だなwww
547:132人目の素数さん
23/06/17 10:11:47.72 E0BKNkWv.net
前回>>490-491のは間違い見つけたので訂正
sinα + sinβ + sinγのu,v,wによる表示までは全く同じ
なのでそれ以降
完全に高校数学レベルになった
sinα + sinβ + sinγ
= √3/6√(3 -2(u²+v²+w²))
×(1/√((1+v)(1-w))+1/√((1+w)(1-u))+1/√((1+u)(1-v)))
である
よって主張を得るには
1/√((1+v)(1-w))+1/√((1+w)(1-u))+1/√((1+u)(1-v)) - 3√3/√(3 -2(u²+v²+w²))
≦ 0
を示せばよい
ここでAM≧GMより
2≦√x + √(1/x)
だから
2√xy ≦ √x + √y
が任意の正の実数について成立するから
2/√((1+v)(1-w))≦1/√1(1+v)+1/√(1-w),
2/√((1+w)(1-u))≦1/√(1+w)+1/√1(1-u),
2/√((1+u)(1-v))≦1/√(1+u)+1/√1(1-v),
である
よって主張を示すには
1/√(1+v)+1/√(1-w)+1/√(1+w)+1/√(1-u)+1/√(1+u))+1/√(1-v) - 6/√(1 -2/3(u²+v²+w²))
≦0‥?
を示せば十分とわかる
?の左辺の前の6項は上に凸なℝ上の関数√xと線形関数π→ℝの合成だから上に凸である
最後の項も上に凸な単調減少関数-1/√(1-(2/3x))と下に凸な関数u²+v²+z²の合成だから上に凸である
よって?左辺は上に凸な関数であり、勾配が0がある点があればそこで最大値をとる
一方で?左辺は偶関数だから原点で勾配は0である□
548:132人目の素数さん
23/06/17 10:15:02.25 5cTxLT1j.net
>>534
尿瓶ジジイ医師板でも数学板でも馬鹿にされて楽しいか?
549:132人目の素数さん
23/06/17 10:22:51.85 ja/dKOQS.net
尿瓶ジジイまだ懲りずに東大だの医者だのアホな妄言繰り返してるのか
もうお迎えも近いみたいだな
550:132人目の素数さん
23/06/17 11:16:01.23 vqvHI+3x.net
最高レベルの出題をします
高校範囲内で解いてください
【問題】
xy平面の放物線y=x^2上に3点P,A,BをPA=5,PB=7となるようにとるとき、ABの取りうる値の範囲を求めよ。
551:132人目の素数さん
23/06/17 12:26:22.37 CcX2iPRS.net
AB = √(74 - 70cos∠APB)
APBの順に配置してPのx座標→∞で∠APB→π
PABの順に配置してPのx座標→∞で∠APB→0
∴2 < AB < 12
552:132人目の素数さん
23/06/17 12:46:15.57 vqvHI+3x.net
>>542
ありがとうございます
正解です
553:132人目の素数さん
23/06/17 13:50:11.45 hSn/JHdb.net
>>538
煩雑でいまいちだなぁ。元の問題があってんのかね?
数学コンテスも問題のようだが。
554:132人目の素数さん
23/06/17 14:00:34.79 iCv+VbLe.net
あかんやろ
555:132人目の素数さん
23/06/17 14:01:59.16 iCv+VbLe.net
>>544
人の証明くさしてる暇があったら自分がキレイな証明あげればいいやろ
アホか
556:132人目の素数さん
23/06/17 14:11:56.52 vqvHI+3x.net
>>546
ゴミみたいな自称「証明」を上げられても困るんですよ
傑作出題、精確回答
これだけで十分です
557:132人目の素数さん
23/06/17 14:22:53.26 hSn/JHdb.net
>>546
自分でできりゃ苦労しないよw
>>542の証明をくさしてるわけじゃなくて、元の問題がいかがなものかというつもりで書いたんだが、
証明すべき式は正しいんだよなぁ。
558:132人目の素数さん
23/06/17 14:23:45.09 hSn/JHdb.net
いけね、>>542じゃなくて>>538ねw
559:132人目の素数さん
23/06/17 15:54:01.80 JKf6bCZr.net
>>458
∠GAC=α~、∠GBA=β~、∠GCB=γ~ とする。
鏡像を考えると、
sin α~ + sin β~ + sin γ~ ≦ 3/2
を示すことができれば、それでもok
sin α + sin β + sin γ + sin α~ + sin β~ + sin γ~
≦ 6 * sin((α+β+γ+α~+β~+γ~)/6) = 6 * sin(π/6) = 3
(不等号は、sin(x)が区間(0,π)で上に凸であることに因る)
従って、
sin α + sin β + sin γ ≦ 3/2
sin α~ + sin β~ + sin γ~ ≦ 3/2
この二式のうち、少なくとも一方は成立する
560:132人目の素数さん
23/06/17 16:02:42.19 vqvHI+3x.net
【傑作出題】
3^n-40=k^2+n
を満たす正整数の組(k,n)は存在するか。
561:132人目の素数さん
23/06/17 17:02:45.76 187ZM7iw.net
パチンコにガロゴールデンインパクトという機種があります。
1回あたった後に、
50%の確率でおまけで2回目があたります。
50%でおまけはなくそこで終わります
2回目以降は81%が当たれば、さらにおまけでもう1回あたります。
19%の方になるとおまけはなく、そこで終わります。
4回目があたる確率は計算できますか?
562:132人目の素数さん
23/06/17 17:09:07.82 z7BdFKSK.net
そうこの問題は
X = sinα+sinβ+sinγ
Y = sinα~+sinβ~+sinγ~
とおくとき
X+Y≦3
XY - 3/2(X+Y) + 9/4 ≧ 0
の”両方が”成立する事を示すのが目標
そしてX+Y≦3の方は一瞬でもう一方が問題なんだなと気付くとこまでが最初の一歩
563:132人目の素数さん
23/06/17 18:12:02.12 rEJvz7zI.net
>>534=尿瓶ジジイの脳内医療をとくとご覧あれ
269 卵の名無しさん (ワッチョイ 5f58-WBpu [14.13.16.0])[sage] 2023/06/17(土) 05:59:37.51 ID:9PcXsfQp0
>>258
悪性症候群は数例あたったけど
抗パ剤は止めないでダントレン投与するよ。
悪性高熱は幸い遭遇してない。
ICUでプロポフォールでのCK上昇は経験ある。
PRISを疑って中止した。
274 卵の名無しさん (スッププ Sd9f-ZmF9 [49.105.77.69])[sage] 2023/06/17(土) 10:56:21.05 ID:8gbikhN+d
>>269
悪性症候群で抗ドーパミン薬止めないなんて当たり前だろ。止めて起こるのが悪性症候群なのに
>>252でお前は、悪性高熱症に抗ドーパミン薬止めるって書いてるよな?それが全く病態理解出来てないって話なんだが
会話成り立た無さすぎだろ。話をはぐらかしてんのか?
564:132人目の素数さん
23/06/17 18:59:26.53 982cwwMB.net
18m(m+1)+2=n(n+1)
m,nともに自然数となることを証明せよ
565:132人目の素数さん
23/06/17 19:25:14.47 JKf6bCZr.net
>>550 は撤回します。あれは、
sin α + sin β + sin γ ≦ 3/2 または、sin α~ + sin β~ + sin γ~ ≦ 3/2
を示してたもの。しかし、問題は
sin α + sin β + sin γ ≦ 3/2 かつ、sin α~ + sin β~ + sin γ~ ≦ 3/2
を求めているようだ。
>>550の証明は、内部に取る点として、三角形内にさえあれば、どこでも通用するようなものになっている。
あの証明でいいのなら、重心にする必要が無い。
しかし、重心に限ると、同時に成立させられそうだ。恐らく、この解釈が正しそうだ。
566:132人目の素数さん
23/06/17 19:35:04.94 vqvHI+3x.net
どのような自然数kについても、2nCnがkの倍数になるような自然数nが存在することを示せ。
567:132人目の素数さん
23/06/17 19:45:30.28 JAwOw/sX.net
そうそう、点が重心でないなら片方が3/2を超える例は簡単に作れる
例えば
?ABを適当にとってsin∠XAB=0.9の半直線AXとsin∠YAB=0.8の半直線AYを引く
?sin∠ZBA=0.9の半直線BZとsin∠WBZ=0.8の半直線BWを引く
?AXとBZの交点をC、AYとBWの交点をGとする
このときGは△ABCの内点でsin∠GAB=0.8、sin∠GBC = 0.8、sin∠GCAを計算するまでもなく3つの和は1.5を超える
もちろんGは重心ではない
つまりこの問題は「Gが△ABCの内点ならいつでも成立するわけではない、示すにはGが重心である事を利用しない限りは解けない」のでこの性質をどうにか生かせばいいかが問題になる
568:132人目の素数さん
23/06/17 20:28:38.16 GFX4OAea.net
e,l,を任意にとり2ᵐ>2l-1を任意にとる
n = l+2ᵐ(2l-1)+2²ᵐ(2l-1)+..+2ᵉᵐ の2進展開の中に1はe個以上
∴ 2ᵉ | ₂ₙCₙ
(n-1)C[2n,n]
= 2(n-1)C[2n-1,n-1]
= 2(2n-1)C[2n-2,n-2)
∴ (2n-1) C[2n,n]
2l-1 | 2n-1
∴ 2ᵉ(2l-1) | ₂ₙCₙ
569:132人目の素数さん
23/06/18 09:44:28.04 KMZqXm/X.net
>>530
受験板池。板違いにも程があるわ。
570:132人目の素数さん
23/06/19 01:05:20.32 Vt/aIrFi.net
放物線 y^2 = 4px 上の点P(x1 , y1)における接線の方程式が
y1y=2p(x+x
571:1) となることを証明する問題で 模範解答は y'=2p/y から、y-y1=y'(x-x1)を変形して導いているのですが、 ここでyについて解いたy'=±√(p/x)を使って両辺を二乗して (y-y1)^2=(p/x1)(x-x1)^2 という式を作っても、解答にたどり着きません。また、 左辺の(y-y1)^2=y^2+y1^2-2yy1=4p(x+x1)-2yy1=2{2p(x+x1)-y1y} ここで、(y-y1)^2=0になれば、なぜか接線の方程式の形になる ということにに気が付いたのですが、とすると接線の方程式を変形すれば y-y1=0となってしまうじゃないかと疑問に思い、さらに混乱してしまいました。 なぜyについて解いた形で、同じようにやっても解答にたどり着けないのかと、 左辺が接線の方程式の形になることに何か意味があるのか、 y-y1=0という、一見すると破綻しているような式が、 接線の方程式の変形としてなぜ出てくるのかわかりません。 抽象的な質問で申し訳ありません。 よろしくお願いします。
572:132人目の素数さん
23/06/19 08:26:36.36 N9nld7am.net
確率pで1, 確率1-pで0がでる機械があるときにあなたは1,0を当てるゲームをします。
100回試行するとき当てる数を最大にするにはどう予言するのがベストでしょうか?
573:132人目の素数さん
23/06/19 11:25:49.79 KnGLA3+t.net
正四面体ABCDの各辺は、それぞれ確率pで電流を通す。
いま点Aに四面体の外部から電流が流れ込んだ。このとき、点Aから点Dまで電流が流れる確率をpの多項式で表せ。
ただし点Dまで電流が流入する経路は複数通りあってもよいものとする。
574:132人目の素数さん
23/06/19 11:33:02.90 zXFpaulb.net
P(Aが孤立) = (1-p)³
P(Dが孤立) = (1-p)³
P(A,Dが孤立∧A,Dは連結でない) = 3p²(1-p)²
575:132人目の素数さん
23/06/19 11:55:59.92 KnGLA3+t.net
n^2+1とn^n+1がともに3で割り切れるような正整数nをすべて決定せよ。
(類題:一橋1998)
576:132人目の素数さん
23/06/19 12:01:53.75 xWI0t6H9.net
n² +1 ≡ 1,2 ( mod 3 )
577:132人目の素数さん
23/06/19 13:48:53.44 KnGLA3+t.net
東京大学理系数学の平均点が最も低かったのは何年ですか?
578:132人目の素数さん
23/06/19 14:19:40.60 rx3CrWrq.net
後期だと1998あたりに試験時間じゃ誰一人解けなかったであろう超難問があったな
で、その前の年は3問中3問とも大関クラスの難易度だと大学への数学に書かれてたと記憶してる
前期も90年代が総じて難易度が高いが平均点は公表されてないと思う
6問中1問完答できれば合格圏と言われてた時期だが数学0点でも他科目だけで合格できてしまう時代だった
80年代以前はよく知らない
2000年以降は他大と大差ないくらいに難易度が下がってる
579:132人目の素数さん
23/06/19 14:52:48.23 rnD0/yXN.net
n^2+8 が 2n+1 で割り切れるような自然数nは
1と5だけでしょうか。
580:132人目の素数さん
23/06/19 14:56:48.51 rx3CrWrq.net
16
581:132人目の素数さん
23/06/19 15:49:20.23 rx3CrWrq.net
2 * (n^2+8) / (2n+1) = (n-1) + 33/(4n+2) + 1/2
右辺第2項は単調減少、n=16のときに第2項=1/2
n>16では第2項と第3項の和が整数になることはない
582:132人目の素数さん
23/06/19 16:12:51.23 rnD0/yXN.net
ありがとうございます
数学の人はすごいです
583:132人目の素数さん
23/06/19 16:14:46.33 IpGfg0uk.net
なぜ4でなくて2を掛けたのか謎
584:132人目の素数さん
23/06/19 16:57:05.31 rx3CrWrq.net
nを大きくしていったとき (n^2+8) / (2n+1) の小数部分を見てみたら0.25付近と0.75付近を繰り返してるのが分かったから
2を掛けたら小数部分が0.5くらいになりそうだというのが着想
確かに4掛けた方が証明はきれいだね
585:132人目の素数さん
23/06/19 18:10:36.56 i5yg11Bf.net
>>561
>という式を作っても、解答にたどり着きません。
たどり着けるだろう。(p/x1)=4p^2/y1^2 なので、
(y-y1)^2=(p/x1)(x-x1)^2 =4p^2(x-x1)^2/y1^2
⇔y-y1 =± 2p(x-x1)/y1
なんのことはない、y-y1=y'(x-x1)において、y'=2p/y1とした式
y-y1 =2p(x-x1)/y1
と同じものが出てくる。y-y1 = -2p(x-x1)/y1 のほうは、元の方程式を
2乗したために出てきた方程式で正しくない。
要するに模範解答通りの式変形をすればいいだけの話。
>左辺の(y-y1)^2=y^2+y1^2-2yy1=4p(x+x1)-2yy1=2{2p(x+x1)-y1y}
これは間違い。y^2=4px にはならん。ここの変数y は接線の方程式を
みたすyであって、y^2=4pxという方程式のyとは別物。
586:132人目の素数さん
23/06/19 19:26:08.82 +BYvmncS.net
8行目以降、書いてあることが理解不能です。どなたかどういうことか教えて下さい。お願い致します。
URLリンク(i.imgur.com)
587:132人目の素数さん
23/06/19 20:17:34.89 i5yg11Bf.net
>>576
2枚とも両面が白を選ぶ確率は、単純に両面白のカードを選ぶ場合の数 nC2を
2枚のとりうる場合の総数2nC2で割ればよくて nC2/2nC2
この場合、どちらも白が表になる確率は1なので、 P(An∩En) =nC2/2nC2
2枚のうち一方が白黒でもうひとつが両面白を選ぶ確率はnC1×nC1/2nC2。
このうち、白黒のほうの白が表になる確率は1/2なので、P(Bn∩En) =nC1×nC1/ 2nC2 ×(1/2)
2枚とも白黒を選ぶ確率はnC2/2nC2
このうちどちらも白が表になる確率は(1/2)^2なので、P(Cn∩En) =nC2/2nC2×(1/2)^2
EnはAn∩En,Bn∩En,Cn∩Enという背反ないずれかの事象に分類されるので、Enが起きる確率は
それらが起きる確率の和になり、
P(En)=nC2/2nC2 +nC1×nC1/ 2nC2 ×(1/2) +nC2/2nC2×(1/2)^2
よって、
Pn =P(An∩En)/P(En) =( nC2/2nC2 ) / (nC2/2nC2 +nC1×nC1/ 2nC2 ×(1/2) +nC2/2nC2×(1/2)^2)
=nC2/{ nC2 +(1/2)nC1^2 +(1/4)nC2 }
= n(n-1)/2 ! / { n(n-1)/2! + (1/2)n^2 +(1/4)n(n-1)/2!}
=4n(n-1) /{ 4n(n-1) + 4n^2 + n(n-1)}
=4(n-1) /{4(n-1) +4n+ (n-1)}
=4(n-1) /(9n - 4)
588:132人目の素数さん
23/06/19 20:23:17.72 i5yg11Bf.net
最終行間違えた
✕ =4(n-1) /(9n - 4)
◯ =4(n-1) /(9n - 5)
589:132人目の素数さん
23/06/19 21:20:55.06 rx3CrWrq.net
2枚とも表が白の場合の数 3nC2 - n
2枚とも表も裏も白の場合の数 2nC2 - n
(2nC2 - n) / (3nC2 - n) = 4(n-1) / (9n-5)
590:132人目の素数さん
23/06/19 22:36:33.07 Vt/aIrFi.net
>>575 さん
ありがとうございます!!!
勘違いでずっと悩んでいました。
591:132人目の素数さん
23/06/19 22:49:57.88 +BYvmncS.net
>>577
詳しくありがとうございます、が、すいません、考えたんですがまだよく理解できていません。
まずそもそもP(An∩En)というのは何の確率を表しているんでしょうか?
592:132人目の素数さん
23/06/19 23:56:46.84 yHrRBJb4.net
医師になるのは、めちゃくちゃ簡単だよ。
どんな馬鹿医大でも国家試験の合格率7割以上はあるし、自治医大以上ならほぼ100%。
弁護士の場合は難関ロースクールを卒業しても、国家試験を通るのは10%程度。
医師になるには金と時間がかかるが、試験自体は簡単。
うちは従兄弟三人医師になったが、英検二級すら落ちるレベルの頭だからね。
医師国家試験の合格率ランキング見てみ。
一番低い杏林大学ですら、79.4%。
奈良県立大以上の偏差値の25校は95.0%超え。
これのどこが難関試験なの?
医学部に学費を支払える財力のハードルが高いだけで、医師にはバカでもなれる。
弁護士、司法書士、会計士、英検1級あたりは、バカには絶対に無理。
まとめると
医師国家試験→バカでも受かる。しかし、医学部6年間で1,000万以上かかる学費のハードルが高い。
司法試験→ロースクール卒業しても、合格できるのはごく一部。非常に難関な試験。
司法書士→ロースクールに行かなくても受験できるが、難易度は司法試験並み。
英検1級→英語がずば抜けて優秀でないと合格できない。英語の偏差値100必要。(実際にはそんな偏差値はないが)
会計士→おそらく、最難関試験か。会計大学院修了者の合格率は7.6%しかない。
不動産鑑定士→鑑定理論が地獄。単体の科目としては最難関の一つ。経済学などは公務員試験より簡単か。
593:132人目の素数さん
23/06/20 00:44:38.73 gqKMua26.net
誰、このきちがい?>>582
594:132人目の素数さん
23/06/20 00:57:59.66 gqKMua26.net
>>581
>まずそもそもP(An∩En)というのは何の確率を表しているんでしょうか?
Anという事象とEnという事象がともに起きる確率。この問題にあてはめると、
無作為に2枚のカード選んで床においた際にどちらも両面が白であり、かつ、
2枚のカードの見える面がどちらも白になっている確率。
595:132人目の素数さん
23/06/20 01:12:10.84 Uo3v6gcX.net
そもそも何の話してんの?
元ネタがないのに会話してる
自演?
596:132人目の素数さん
23/06/20 06:12:02.77 W9HMXEWP.net
>>582
どうせ、いつもの自称医者だろ
東大云々言ってる奴
コンプレックス丸出し
597:132人目の素数さん
23/06/20 06:14:47.18 7DcjvU1N.net
>>585
辿れよ
598:132人目の素数さん
23/06/20 08:25:03.36 Sb/3qffu.net
辿ったら元問題なかったから、言ってるんだけど
599:132人目の素数さん
23/06/20 08:55:24.72 gqKMua26.net
>>588
元問題?どのレスのこと言ってるの?
>>584のことを言ってるのなら元問題は
600:>>576だよ。 >>582のことを言ってるのなら元ネタなんかそもそもない。キチガイの突発的な書き込み。
601:132人目の素数さん
23/06/20 08:59:33.86 W4OUBV0R.net
おお、わかった、見れたthx
602:132人目の素数さん
23/06/20 09:02:29.08 W4OUBV0R.net
でもコレホントかな
今の受験数学のどの受験参考書でも検定教科書でも条件付き確率を
P(A | E)
で表記する事はまずないよ
まずネタだと思う
603:132人目の素数さん
23/06/20 09:47:28.01 gqKMua26.net
>>581
もう少し詳細に説明すると、Anという事象もEnという事象もとことん細かく場合わけ(分解?)してやると、
複数の事象を要素とする集合と考えることができる。したがって、An∩En というのは、AnとBnに
共通する事象を要素とする集合であり、P(An∩En)というのは、共通する事象の集合としての事象が発現する
確率ということになる。U を要素となりうる事象全体からなる集合とし、それぞれの事象が等確率で
発現するとすれば、
P(An∩En) = #((An∩En)/#U (#は集合の要素の数を表す)
となる。
両面白のカードにx1,x2,x3,,,xn、白黒のカードにy1,y2,...,ynと名前をつけ、更に表裏を識別する
添字として、表は+、裏は-をつける。白黒のカードは表を白、裏を黒として表裏を定義しておく。
そうすると、2枚のカードを取り出して床においたときのカードの状態は { x2+,y5-}のように、
順不同のカードの状態の組み合わせとして場合分けできるので、これを「要素となりうる事象」
として扱えばよい。
したがって、Anは{xi±,xj±} (ただし、i≠j、複合はどちらか一方)という事象の集合と考える
ことができる。同様に、Bnは{xi±、yj±} (i,jは重複してもよい、複合はどちらか一方)、Cnは
{yi±、yj±}(ただし、i≠j、複合はどちらか一方)で表せる事象の集合体と考えることができる。
Enは{xi±,xj±} (つまりAn=An∩Enの要素)と {xi±、yj+}(Bnの要素の一部、つまりBn∩Enの要素)
と{yi+、yj+}(Cnの要素の一部、つまりCn∩Enの要素)からなる集合になっている。
604:132人目の素数さん
23/06/20 10:03:31.62 gqKMua26.net
>>591
コルモゴロフ流がP_A(B)で、ジェフリーズ流がP(B|A)ってことらしいが、確かに教科書的には前者だな。
まあ、>>576の出典が古いからってネタってわけでもなかろう。しらんけど。
605:132人目の素数さん
23/06/20 11:10:21.55 J3VJ4qtZ.net
ある家族の構成は父母子供2人である。今、子供のうちどちらか一人が男子だと分かった段階における、他方の子供が男子である条件付き確率を求めよ。
(第一子, 第二子)の性別(男, 男)、(男, 女)、(女, 男)、(女, 女)を考えて、これらが当確率で起こると仮定する。今の段階では(女, 女)は起こり得ず他の3通りは等確率で起こり得るので1/3となる。
606:132人目の素数さん
23/06/20 11:31:41.61 OHL59uZ9.net
どのような経緯で1人が男だと分かったかによる
前提条件で答は変わる
607:132人目の素数さん
23/06/20 11:43:20.62 Z42PW1CA.net
3個の箱、箱1、箱2、箱3があり、このうちの1つにだけ当たり券が入っていることが分かっている。どの箱が当たりか知っている人間Aと知らない人間Bがいる。Bは1つの箱を選んだ。Aはその後でBが選ばなかった箱のうちの1つを開け、中に当たり券が入っていないことをBに示した。Bはこの後で箱を選び直す権利がある。Bは最初に選んだ箱のままにするのが良いのか箱を変えた方が良いのか考察せよ。
箱1に当たりが入っている場合
Bが初めに選ぶ箱は3通りありこれらは同様に確からしいと考える。
Bが当たる確率は1→1、2→1、3→1なので(1/3)(1/2)×3=1/2
Bが箱を変えないという戦略をとった場合の当たる確率は1→1のみで1/3
箱を変えるという戦略をとった場合の当たる確率は2→1、3→1の場合で2/3
箱2が当たりの場合、箱3が当たりの場合も同様である。
よって箱を変える方が箱を変えない方よりも当たる確率は大きい。
変えると決めておく→2/3
その場で決める→1/2
変えないと決めておく→1/3
608:132人目の素数さん
23/06/20 11:59:31.73 NClLHwUo.net
医師になるのは、めちゃくちゃ簡単だよ。
どんな馬鹿医大でも国家試験の合格率7割以上はあるし、自治医大以上ならほぼ100%。
弁護士の場合は難関ロースクールを卒業しても、国家試験を通るのは10%程度。
医師になるには金と時間がかかるが、試験自体は簡単。
うちは従兄弟三人医師になったが、英検二級すら落ちるレベルの頭だからね。
医師国家試験の合格率ランキング見てみ。
一番低い杏林大学ですら、79.4%。
奈良県立大以上の偏差値の25校は95.0%超え。
これのどこが難関試験なの?
医学部に学費を支払える財力のハードルが高いだけで、医師にはバカでもなれる。
弁護士、司法書士、会計士、英検1級あたりは、バカには絶対に無理。
まとめると
医師国家試験→バカでも受かる。しかし、医学部6年間で1,000万以上かかる学費のハードルが高い。
司法試験→ロースクール卒業しても、合格できるのはごく一部。非常に難関な試験。
司法書士→ロースクールに行かなくても受験できるが、難易度は司法試験並み。
英検1級→英語がずば抜けて優秀でないと合格できない。英語の偏差値100必要。(実際にはそんな偏差値はないが)
会計士→おそらく、最難関試験か。会計大学院修了者の合格率は7.6%しかない。
不動産鑑定士→鑑定理論が地獄。単体の科目としては最難関の一つ。経済学などは公務員試験より簡単か。
609:132人目の素数さん
23/06/20 12:02:13.00 JdmnSXgY.net
一方が男子という条件なしの確率は1/4、
条件付き確率は1/3
ハズレ箱を開けるという条件なしの確率は1/3、
条件付き確率は1/2
それぞれの条件は
他方が男子である確率を高める、
当たり箱を選ぶ確率を高める
条件であるので当然である。
610:132人目の素数さん
23/06/20 12:55:04.74 JdmnSXgY.net
白白のカードXがn枚、白黒のカード Yがn枚ある。
今これらの2n枚の中から2枚選び、テーブルの上に置いたところ2枚とも白であった。この時、2枚ともXである条件付き確率を求めよ。
XXの時, ₙC₂/₂ₙC₂ (1)
XYの時, (ₙC₁×ₙC₁/₂ₙC₂)(1/2) (2)
YYの時, (ₙC₂/₂ₙC₂)(1/4) (3)
(1)/{(1)+(2)+(3)}
=4n(n-1)/{4n(n-1)+4n²+n(n-1)}
=4(n-1)/(9n-5)
611:132人目の素数さん
23/06/20 13:29:19.90 eavdfkiJ.net
>>588
辿れよw
612:132人目の素数さん
23/06/20 13:33:08.12 JdmnSXgY.net
白白となる事象を当たりと呼ぶ。
XXの後当たる確率は1
XYの後当たる確率は1/2
YYの後当たる確率は1/4
よって当たる確率の比は
XX: XY: YY=4: 2: 1 (という重み)
ここでXXとなる確率とYYとなる確率は等しい。
4XX/(4XX+2XY+YY)
=4XX/(5XX+2XY)
XXとなる場合の数はₙC₂、
XYとなる場合の数はₙC₁×ₙC₁=n²である。
4ₙC₂/(5ₙC₂+2n²)
=4n(n-1)/(5n(n-1)+4n²)
=4(n-1)/(9n-5)
613:132人目の素数さん
23/06/20 14:46:17.38 G0LGVpNZ.net
xyz空間の3点A(0,1,0),B(1,0,1),C(-2,2,3)を頂点とする三角形の周および内部の領域をDとする。
点(0,-1,2)を中心とする半径rの球面(内部は含まない)がDと共有点を持つようなrの範囲を求めよ。
614:132人目の素数さん
23/06/20 15:22:22.73 FJgnuDxZ.net
XYはn²通り、
XXはn(n-1)/2通りで
1枚目の白を固定し2枚目だけを考えることにすると
(X) (Y)=(n-1)/2:n=(n-1): 2n
よって
4XX/(5XX+2XY)
=4(X)/(5(X)+2(Y))
= 4(n-1)/(5(n-1)+2×2n)
=4(n-1)/(9n-5)
615:132人目の素数さん
23/06/20 15:31:03.52 FJgnuDxZ.net
裏が両方黒である確率は
YY/(4XX+2XY+YY)
=XX/(5XX+2XY)
=(X)/(5(X)+2(Y))
=(n-1)/(9n-5)
616:132人目の素数さん
23/06/20 15:45:16.58 FJgnuDxZ.net
表が白白になった時に裏が白白、黒黒、白黒になる条件付き確率の比は
4(n-1): (n-1): 4n
となる。
617:132人目の素数さん
23/06/20 16:03:07.54 FJgnuDxZ.net
白黒となる条件付き確率が常に最も大きいが、
nが大きくなると白白と白黒の条件付き確率の比率が近くなり
白白: 黒黒: 白黒の条件付き確率の比は
4: 1: 4 に近づく。
618:132人目の素数さん
23/06/20 16:32:28.53 ZT3fUS59.net
>>602
> dat
[,1] [,2] [,3]
A 0 1 0
B 1 0 1
C -2 2 3
E 0 -1 2
> dist(dat)
A B C
B 1.732051
C 3.741657 4.123106
E 2.828427 1.732051 3.741657
1.73から3.74
619:132人目の素数さん
23/06/20 16:45:49.53 FJgnuDxZ.net
P(A|B)=P(A∩B)/P(B)
P(B)は2枚とも表が白となる確率
P(A)は2枚とも裏が白となる確率
P(A∩B)は2枚とも両面が白となる確率
全部で2n枚ある中から2枚取り出すという事象は₂ₙC₂通り・・・①あり、これらは同様に確からしい。
P(A∩B)=ₙC₂/①
P(B)=(ₙC₂+(ₙC₂)/4+(ₙC₁×ₙC₁)/2)/①
よってP(A|B)=8ₙC₂/(10ₙC₂+4n²)
=4n(n-1)/{5n(n-1)+4n²}
=4(n-1)/(9n-5)
620:132人目の素数さん
23/06/20 17:19:25.04 OHL59uZ9.net
>>602
P(0,-1,2)
|PA↑|^2 = 8、|PB↑|^2 = 3、|PC↑|^2 = 14
最遠点はC
r^2 = |PA↑ + sAB↑ + tAC↑|^2
∂r^2/∂s = 6s-8
∂r^2/∂t = 28t-8
∂r^2/∂s =∂r^2/∂t = 0 ⇒ s = 4/3, t = 2/7
最近点はBC上にある
d r^2(s, 1-s) / ds = 34s-28
d r^2(s, 1-s) / ds = 0 ⇒ s = 14/17
r^2(s=14/17, t=3/17
621:) = 42/17 √(42/17) ≦ r ≦ √14
622:132人目の素数さん
23/06/20 17:22:54.77 FJgnuDxZ.net
両面が白のカードをX、
片面が黒のカードをYとする。
P(B∩XX)=P(XX)×1 ①
P(B∩YY)=P(YY)×1/4 ②
P(B∩XY)=P(XY)×1/2 ③
|XX|=|YY|であるから
①: ②: ③=4|XX|: |XX|: 2|XY|
|XX|: |XY|=(n-1): 2nである
P(B∩XX)/(P(B∩XX)+P(B∩YY)+P(B∩XY))
=P(B∩XX)/P(B)
ここでP(XX)=P(A∩B)=P(B∩XX)であるから
=P(A∩B)/P(B)
=4(n-1)/{5(n-1)+4n}
=4(n-1)/(9n-5)
623:132人目の素数さん
23/06/20 17:26:33.14 hf9Nt4h0.net
点と平面の距離ではない
点と直線の距離の最小値を3つ求めてそれが線分上でなければ捨てる
各点までの距離3つと今の作業で生き残った0~3個の距離のうちの最小値が答え
624:132人目の素数さん
23/06/20 17:30:02.74 OHL59uZ9.net
>>611
三角形の内部も領域に含むので面上に最近点がある可能性もある
625:132人目の素数さん
23/06/20 17:33:04.02 FJgnuDxZ.net
条件付き確率P(A|B)=P(A∩B)/P(B)において、
P(B)=P(B∩XX)+P(B∩YY)+P(B∩XY)と排反な事象に分割し、
P(A∩B)=P(XX)と読み替え、
更に確率の比を重み付き場合の数の比として考える。
626:132人目の素数さん
23/06/20 17:39:08.65 tiLdMXYR.net
内部含まないって明示されとるやん
627:132人目の素数さん
23/06/20 17:40:01.51 OHL59uZ9.net
三角形の周および「内部」の領域をDとする
628:132人目の素数さん
23/06/20 17:41:23.51 tiLdMXYR.net
あ、ほんまや
含まないのは球の内部か
失礼しました
629:132人目の素数さん
23/06/20 18:36:33.41 FJgnuDxZ.net
△ABCの周と内部の点Pは
p=OA+sAB+tAC、0≤s≤1、0≤t≤1
と表せる。
p=(0 1 0)+s(1 -1 1)+t(-2 1 3)
E(0,-1,2)とすると
|EP|²=f(s, t)=(s-2t)²+(-s+t+2)²+(s+3t-2)²
=3s²+14t²-8s-8t+8
=3(s-4/3)²+14(t-2/7)²+8-16/3-8/7
(s, t)=(1, 2/7)の時最小値13/7
(s, t)=(0, 1)の時最大値14
f(s, t)は領域Dの上の連続関数なのでこの間の値を全て取り得る。
∴√(13/7)≤r≤√14
630:132人目の素数さん
23/06/20 18:40:21.65 xXvyhZR8.net
正答のあとにわざわざ誤答を晒す馬鹿
631:132人目の素数さん
23/06/20 19:02:26.17 FJgnuDxZ.net
s+t≤1より
線分BC上で最小となる。
p=OB+uBC、0≤u≤1と置ける
p=(1, 0, 1)+u(-3, 2, 2)
|EP|²=(1-3u)²+(1+2u)²+(-1+2u)²
=17u²-6u+3=17(u-3/17)²+3-9/17
u=3/17のとき最小となる
よって
√(42/17)≤r≤√14
632:132人目の素数さん
23/06/20 19:49:06.79 NJOp1Btg.net
f(A), f(B), f(C)の最大値がr²の最大値となる。
垂線の足Hが△ABCの内部にあればf(H)がr²の最小値となる
0≤s≤1、0≤t≤1、0≤s+t≤1
Hが△の外部にある時は最大値をとる点の対辺上で最小となる。
f(A)が最大ならば線分BC上で最小値をとる。
2次関数になるので微分法が手早い。
633:132人目の素数さん
23/06/20 19:54:45.22 OHL59uZ9.net
>>620
>f(A)が最大ならば線分BC上で最小値をとる。
これは誤り
634:132人目の素数さん
23/06/20 20:11:25.85 3xfW6zy6.net
|EP|²=f(s, t)=(s-2t)²+(-s+t+2)²+(s+3t-2)²
=3s²+14t²-8s-8t+8
∂f∂s=6s-8=0、s=4/3
∂f/∂t=28t-8=0、t=2/7
∴Hは△ABCの外部にある
f(0, 0)=8、f(0, 1)=14、f(1, 0)=3
t=1-sとおいて
g(s)=3s²+14(1-s)²
dg/ds=6s+28s-28=0、s=14/17
g(14/17)=3(14/17)²+14(3/17)²
=42/17
∴√(42/7)≤r≤√14
635:132人目の素数さん
23/06/20 20:24:31.16 3xfW6zy6.net
△ABCの外部かつ点Aが最も遠い点の集合
線分ABの垂直二等分線と線分ACの垂直二等分線によって分けられる4つの領域のうちのAの向かい側。ここに線分ABや線分ACの一部が含まれることがありその上で最小値をとる場合がある
636:132人目の素数さん
23/06/20 20:34:13.34 otSqKCgw.net
同じことを何度もくどくど書くな
637:132人目の素数さん
23/06/20 20:42:29.73 3xfW6zy6.net
三辺を延長して△ABCの外部を6分割する。それぞれの領域内の点から最短となる場所は
s<0、t<0、s+t<1→点A
s>0、t<0、s+t<1→辺AB
s>0、t<0、s+t>1→点B
s>0、t>0、s+t>1→辺BC
s<0、t>0、s+t>1→点C
s<0、t>0、s+t<1→辺AC
s<0、t<0、s+t>1→ない。
s>0、t>0、s+t<1→△の内部
638:132人目の素数さん
23/06/20 21:36:47.20 mXFSSz5k.net
勘は大事
でも確かめるのはもっと大事
639:132人目の素数さん
23/06/20 21:50:23.23 OHL59uZ9.net
A(0,1,0), B(1,0,1), C(-2,2,3), P(0,-1,2)
平行移動
A'(-1,1,-1), B'(0,0,0) = O, C'(-3,2,2), P'(-1,-1,1)
x↑ := OC'↑ = (-3,2,2)
y0↑ := OA'↑ - (OC'↑・OA'↑)/|OC'↑|^2 * OC'↑ = 1/17 * (-8,11,-23)
y↑ := (-8,11,-23)
z↑ := x↑× y0↑ = (-4,-5,-1)
|x↑| = √17
|y↑| = √(42・17)
|z↑| = √42
回転&伸縮
[x↑, y↑, z↑]^T * OC'↑ = (17,0,0) =: C''
[x↑, y↑, z↑]^T * OA'↑ = (3,42,0) =: A''
[x↑, y↑, z↑]^T * OP'↑ = (3,-26,8) =: P''
P''の△A''OC''上の最近点Q''はOC''上の(3,0,0)
Q''に対応する元の点をQとして、PQの長さ = √(26^2 / |y↑|^2 + 8^2 / |z↑|) = √(42/17)
640:132人目の素数さん
23/06/20 21:50:36.86 3xfW6zy6.net
線分までの最短距離は直線までの最短距離と異なる。線分BC⊥BE、線分BC⊥CFとなる点E, Fを外部にとる。
このようにして△ABCの外部を6分割する。
この場合でも答えは変わらない。つまり延長線による分割で答えは出る。
641:132人目の素数さん
23/06/20 21:51:56.04 OHL59uZ9.net
最後訂正
PQの長さ = √(26^2 / |y↑|^2 + 8^2 / |z↑|^2) = √(42/17)
642:132人目の素数さん
23/06/20 21:56:15.80 OHL59uZ9.net
>>625
s<0、t<0、s+t<1→点A
s>0、t<0、s+t>1→点B
s<0、t>0、s+t>1→点C
これらは誤り
643:132人目の素数さん
23/06/20 22:04:20.49 3xfW6zy6.net
f(s, t)の最小値は平面への垂線の足である。
(s, t)の値によって△の内部か外部か分かる
内部→最小値。
外部→最小となる頂点または線分が分かるのでs, tの少なくとも一方が消去出来る。
最大値は頂点でとる。
644:132人目の素数さん
23/06/20 22:06:00.45 acnX6pFH.net
A(0,0)
B((100,1)
C(-100,1)
AP⃗ = -1 AB⃗ + (-2) AC⃗ = (100,-3)
645:132人目の素数さん
23/06/20 22:15:14.50 3xfW6zy6.net
角Aが鈍角の場合、
s<0、t<0の場所からでも頂点A以外の線分AB、線分A内の点に垂線を下ろし得る。
の場合、延長線で分割した図からは正解は出ない。
646:132人目の素数さん
23/06/20 22:16:09.33 Da9XUQ27.net
センスないなあ
647:132人目の素数さん
23/06/20 22:53:57.39 3xfW6zy6.net
=3s²+14t²-8s-8t+8
=3(s-4/3)²+14(t-2/7)²+8-16/3-8/7
Hが外部にある場合の最小値は各線分を全て調べる。
(1) s=0、0≤t≤1の時,
t=2/7の時, 48/7
(2) t=0、0≤s≤1の時,
s=の時, 3
(3) s+t=1、s≥0、t≥0の時,
3s²+14(s-1)²
=17s²-28s+14
=17(s-14/17)²-196/17+238/17
s=14/17、t=3/17の時,
42/17→これが最小となる
648:132人目の素数さん
23/06/20 23:10:23.84 xLgyAczo.net
>>625に自分で書いてるとおり辺BCだけ調べりゃ十分
649:132人目の素数さん
23/06/20 23:43:49.49 gqKMua26.net
>ID:JdmnSXgY
>ID:FJgnuDxZ
>ID:3xfW6zy6
アンカーもつけずに無意味な投稿を繰り返すおかしな人(達)
650:132人目の素数さん
23/06/21 01:39:27.92 QUo4bcuA.net
結局3点に代入するのと3辺に代入するのはどちらも大した手間ではないので感覚でやるより無駄を承知で3辺に代入するのが良いだろう。
651:132人目の素数さん
23/06/21 01:58:02.83 QUo4bcuA.net
f(s, t)=3(s-4/3)²+14(t-2/7)²-16/3-8/7+8
と平方完成をして
垂線の足Hが△の外部にあることを確認した後、
f(0, 0)=8、f(0, 1)=14→最大値、f(1, 0)=3
f(0, 2/7)=48/7、f(1, 0)=3、
g(s)=3s²+14(s-1)²、
g'(s)=6s+28s-28=0、s=14/17
g(14/17)=(588+126)/17²
=42/17<3
√(42/17)≤r≤√14
652:132人目の素数さん
23/06/21 07:47:41.60 +SUC1hc6.net
>>638,639
このスレでは1人語りが流行ってんのか?
あほちゃう?w
653:132人目の素数さん
23/06/21 07:50:08.19 ps7QjgLD.net
(A×159.8)÷(A+159.8)=38.3
こ�
654:黷フAを求めたいのですがどうしたら良いのでしょうか! 哀れな私めへどうかお知恵をお貸し下さい!へるぷみー!
655:132人目の素数さん
23/06/21 08:48:22.98 kM8qOZaa.net
うちまじ頭悪すぎて算数が全然わからへんねんけど
誰かこのガチャで伝説の石版Xを1個作るのに必要なダイヤの期待値?的なの計算できる人おるかな
・10連でダイヤを1880個消費する
・絶対にABCが出る天井や確定枠は無い
・ガチャの中からX本体は出ない
・石版XはAを2個+Bを3個+Cを5個で1個作れる
ガチャの中でABCそれぞれが出る確率は
A(アイテム名前は彫刻刀)
1個 8%
2個 3%
4個 0.25%
6個 0.1%
B(設計図)
1個 8%
2個 6%
4個 0.5%
6個 0.2%
C(原石)
2個 8%
3個 6%
5個 0.5%
10個 0.2%
ハズレ(ABCも出ない)多分59.25%
チャットGPTの方が早いか?
656:132人目の素数さん
23/06/21 09:32:30.01 rjHSdr7w.net
最後の行の煽りがなければやってみたかもな
chatGPTへどうぞ
657:132人目の素数さん
23/06/21 10:19:03.21 jEplVY8x.net
>>638
そういう考えの人はいつまでたっても数学が伸びない
実際おまえはこの問題ひとつだけでも何度も誤りを指摘されてる
658:132人目の素数さん
23/06/21 11:21:44.56 h1oBKFLY.net
3変数で関数を作ってNelder-Meadで数値解をだすと
最小のDの座標は
> d + E
[1] 0.4710071 0.3526619 1.3526619
のとき
> opt$value
[1] 1.571811
最大は
> d + E
[1] -2 2 3
> opt$value
[1] 3.741657
厳密解は東大合格者に任せた。
659:132人目の素数さん
23/06/21 11:26:30.28 h1oBKFLY.net
>>641
b=159.8
c=38..3とすると
AB=(bc)/(b-c)
660:132人目の素数さん
23/06/21 12:57:11.74 92+tz6Fh.net
>>645
数値解出すならせめて有効数字2桁くらいは合わせろや
661:132人目の素数さん
23/06/21 12:58:20.98 92+tz6Fh.net
合ってたわすまん
662:132人目の素数さん
23/06/21 13:50:25.63 h1oBKFLY.net
xyz空間の3点A(0,1,0),B(1,0,1),C(-2,2,3)を頂点とする三角形の周および内部の領域をDとする。
d(x,y,z)がDに属するにはx,y,zはどのような条件を満たせばよいか?
663:132人目の素数さん
23/06/21 13:53:02.58 h1oBKFLY.net
>>593
21世紀になって出版されたBayesian Data Analysisを始めとするベイズ統計の本だとP(B|A)で記述されている。
P_A(B)で記述された本は見たことがない。
664:132人目の素数さん
23/06/21 14:14:10.83 h1oBKFLY.net
>>646
A=(bc)/(b-c)の間違い
665:132人目の素数さん
23/06/21 14:19:54.10 h1oBKFLY.net
xyz空間の3点A(0,1,0),B(1,0,1),C(-2,2,3)を頂点とする三角形の周および内部の領域をDとする。
Dに含まれる点を無作為に選んで点E(0,-1,2)との距離rを記録する。
(1) rの期待値を求めよ。有効数字2桁でよい。
(2) rの分布を図示せよ。
666:132人目の素数さん
23/06/21 14:57:07.98 4G4Ct9Dd.net
勉強なぞした事もない
ウソを言うことにひとつのためらいも感じないサイコパス
667:132人目の素数さん
23/06/21 15:29:43.82 9SoBgn36.net
2以上の任意の正整数nに対して、√1+√2+...+√nは無理数であることを証明せよ。
668:132人目の素数さん
23/06/21 15:35:14.91 jEplVY8x.net
高校数学の質問どうぞ
669:132人目の素数さん
23/06/21 15:41:57.52 9SoBgn36.net
>>655
652は高校数学の質問です
670:132人目の素数さん
23/06/21 15:46:26.34 ps7QjgLD.net
>>651
てんきゅー!♥
671:132人目の素数さん
23/06/21 15:53:27.89 jEplVY8x.net
>>656
違います
高校数学の質問どうぞ
672:132人目の素数さん
23/06/21 16:17:34.07 9SoBgn36.net
>>658
いいえ
652が高校数学の質問でないというなら説明してください
673:132人目の素数さん
23/06/21 16:41:23.39 8ZskkXGr.net
高校範囲での証明はおそらく世界中の誰も知りません
高校数学の質問どうぞ
674:132人目の素数さん
23/06/21 17:33:17.94 +SUC1hc6.net
>>650
へー、そうなんだ。
英国流ということで統一されてるのかもね。
なんで高校数学の教科書はコルモゴロフ流なんだろうね?
まあ、どっちでもいいけど、P(A|B)のほうが書きやすいな。
675:132人目の素数さん
23/06/21 17:45:39.90 d14CV15H.net
>>660
これは有名な問題なのですか?
ご教示ください
676:132人目の素数さん
23/06/21 18:14:24.90 JfD+cINQ.net
高校数学だと主張してる自分が出典を書けよ
677:132人目の素数さん
23/06/21 18:18:58.44 kM8qOZaa.net
自決しました
5460個だそうです。これを人力で出せるやつは教師になれるよ
678:132人目の素数さん
23/06/21 18:25:28.45 +SUC1hc6.net
>>664
>自決しました
死ぬんじゃないよw
679:132人目の素数さん
23/06/21 18:31:45.52 d14CV15H.net
>>663
なぜ出典が必要なのですか?
出典書いてない質問たくさんありますよね?
680:132人目の素数さん
23/06/21 18:32:13.79 d14CV15H.net
>>663
解答もしないゴミが舐めた態度取らないでください
681:132人目の素数さん
23/06/21 18:33:15.61 JfD+cINQ.net
高校数学の質問どうぞ
682:132人目の素数さん
23/06/21 18:40:27.87 d14CV15H.net
>>668
2以上の任意の正整数nに対して、√1+√2+...+√nは無理数であることを証明せよ。
683:132人目の素数さん
23/06/21 18:41:51.85 JfD+cINQ.net
高校範囲での証明はおそらく世界中の誰も知りません
高校数学の質問どうぞ
684:132人目の素数さん
23/06/21 19:19:28.97 d14CV15H.net
>>670
2以上の任意の正整数nに対して、√1+√2+...+√nは無理数であることを証明せよ。
685:132人目の素数さん
23/06/21 19:56:03.12 /vfvqxPm.net
高校数学の範囲で証明できる問題の質問どうぞ
686:132人目の素数さん
23/06/21 22:42:59.36 d14CV15H.net
>>672
2以上の任意の正整数nに対して、√1+√2+...+√nは無理数であることを証明せよ。
687:132人目の素数さん
23/06/22 00:32:30.05 MlaxaUMr.net
キチガイが必死w
688:132人目の素数さん
23/06/22 01:11:32.64 JW1PdT5B.net
>>652
相変わらず相手にされてないみたいだねw
689:132人目の素数さん
23/06/22 05:29:41.10 He4AVWSy.net
数学的帰納法でこんとんじょのいこ
690:132人目の素数さん
23/06/22 06:47:26.07 FXoSUyyf.net
サイコロを6個投げて出た目が重複しなかった目の合計を点数とする。
例:
4 5 2 1 5 6 ならば 4+2+1+6=13点
2 4 2 3 1 4 ならば 3+1=4点
(1) 0点になる確率を求めよ
(2) 何点になる確率が最も高いか
(3) 0~21点のうち何点になる確率が最も低いか
(3) 点数の期待値を求めよ
691:132人目の素数さん
23/06/22 07:51:13.53 FXoSUyyf.net
>>649
(1) dが平面ABC上にある4x+5y+z=5
が成り立ち
(2) ベクトルAB,Adの外積ベクトルと、Ad、ACの外積ベクトルの方向が同じ方向 (dが∠ABC内にある)
(3) ベクトルCB,Cdの外積ベクトルと、Cd、CAの外積ベクトルの方向が同じ方向 (dが∠BCA内にある)
(2)(3)の代わりに面積で
△ABC=△ABd+△BCd+△CAdが成立する
でもいい。
692:132人目の素数さん
23/06/22 08:41:21.86 MlaxaUMr.net
出題ばかりで誰も質問しない質問スレwww
終わってるなw
693:132人目の素数さん
23/06/22 09:48:34.90 L+qh/YHa.net
四面体ABCHは
AH⊥HB,AH⊥HC,HB⊥HCであり、AB=AC=4,BC=3である。
(1)AH,BH,CHを求めよ。
(2)△ABCの重心をGとする。GHの長さを求めよ。
694:132人目の素数さん
23/06/22 10:31:55.68 MlaxaUMr.net
はい、また出題厨による出題
質問など皆無の状況
またあほな出題に食いつく馬鹿がいるから救いようがない
ふだん周囲の誰にも相手にされない寂しい奴なんだろうなw
695:132人目の素数さん
23/06/22 10:35:31.43 FXoSUyyf.net
>>677
(1)
場合分けして数えると
(6+450+300+1800)/6^6
696:132人目の素数さん
23/06/22 12:51:27.01 FXoSUyyf.net
>>680
AH^2+BH^2=16
AH^2+CH^2=16
BH^2+CH^2=9
AH^2=23/2
BH^2=CH^2=9/2
AH=√(23/2)
BH=CH=3/√2
697:132人目の素数さん
23/06/22 12:55:53.33 FXoSUyyf.net
>>680
G(√(23/2)/3,1/√2,1/√2)
GH=√((23/2)/9+1/2+1/2)=√(41/18)
698:132人目の素数さん
23/06/22 13:58:12.89 ltCWKvl2.net
数Ⅱの微積分ですが、某参考書に
(a-b)(a^2+ab+b^2-3)=0
「a<b、a-b≠0であるから両辺を a-bで割る」
と書いてあるのですが、なぜ a-bで割るのか理由がよく理解できません。
699:132人目の素数さん
23/06/22 14:58:58.46 DpNBsEi0.net
>>なぜ a-bで割るのか理由がよく理解できません。
(a-b)(a^2+ab+b^2-3)=0
を解くのが目的ではないわけ?
700:132人目の素数さん
23/06/22 17:53:43.90 F2LirJ5P.net
>>686
それを解くなら通常(a-b)を(a^2+ab+b^2-3)に掛けるのではないですか?
701:132人目の素数さん
23/06/22 17:57:30.09 lbP2Z1W2.net
>>681
悔しいですか?
私の作問力は私大文系レベルから京大特色入試レベルまで自由自在です
702:132人目の素数さん
23/06/22 18:58:43.92 +AxUHmZn.net
>>687
(x-3)(x-5)=0の解を求めるとき、展開しますか?
703:132人目の素数さん
23/06/22 19:22:05.54 4r1Cq9lh.net
>>677
(3)の前の方は
19と20だな。どちらも確率0。
704:132人目の素数さん
23/06/22 19:32:16.62 4r1Cq9lh.net
>>689
展開して解の公式を使うのも楽しいかも!?
705:132人目の素数さん
23/06/22 19:37:13.47 dGHQ2nkz.net
さらにx倍からのカルダノの公式
706:132人目の素数さん
23/06/22 20:57:03.13 iMJz92fn.net
>>689
因数分解が終わってるなら展開しませんが
結局、なぜ両辺をa-bで割るんですか?
707:132人目の素数さん
23/06/22 21:31:48.22 YLPthab+.net
574ですが、皆さんありがとうございます
とりあえず、>>592の下から3行目まではなんとか理解できたと思います。
E_nがAn∩En、Bn∩En、Cn∩Enの和になるというのは、まだ納得できずにいます。
ID:FJgnuDxZ氏の考え方もまだ考え中です。
ちなみになんですが、この問題の難易度ってどれくらいだと思われますか?
708:132人目の素数さん
23/06/22 21:34:12.71 +AxUHmZn.net
>>693
(a-b)(a^2+ab+b^2-3)=0も因数分解されてますよ?
また、因数分解されていたら展開しないというのはなぜですか?
709:132人目の素数さん
23/06/22 22:20:27.83 iMJz92fn.net
>>695
微分の問題ですので(x-3)(x-5)=0のように因数分解が終わってるなら関数における xの値が判明しているでしょう
(a-b)(a^2+ab+b^2-3)=0の場合、両辺を(a-b)で割って a^2+ab+b^2-3=0とシンプルにすると解説書に書かれてますが
なぜ両辺を(a-b)で割って(a-b)を消してしまえるのかわかりません。
私は最初からその点を質問しています
710:132人目の素数さん
23/06/22 22:42:55.00 Ynmx89UL.net
max(1+x, 1-x)≧ 1
はなぜいえるのですか。
711:132人目の素数さん
23/06/22 23:03:03.79 c45y4yK9.net
x≧0→max(1+x, 1-x)=1+x≧1 x<0→max(1+x, 1-x)=1-x>1だから
712:132人目の素数さん
23/06/22 23:13:02.92 bA5uzkgG.net
>>696
左辺をa-bで割った答えは
右辺をa-bで割った答えになることはよいですか。
713:132人目の素数さん
23/06/23 00:32:28.73 OeeGjtik.net
>>694
このゴミの山の中からよく自分の質問へのレスを見つけたもんだねw
ID:FJgnuDxZ のレスは独りよがりな内容だから無視したほうがいいよ。
>E_nがAn∩En、Bn∩En、Cn∩Enの和になるというのは、まだ納得できずにいます。
2枚のカードを取り出せば必ず An, Bn, Cn のいずれかの場合になるんだから、
An∪Bn∪Cn = U(全体集合) したがって、(An∩En)∪(Bn∩En)∪(Cn∩En)=U∪En =En
714:132人目の素数さん
23/06/23 00:35:31.27 OeeGjtik.net
おっと、ミスった
✕(An∩En)∪(Bn∩En)∪(Cn∩En)=U∪En =En
◯(An∩En)∪(Bn∩En)∪(Cn∩En)=U∩En =En
集合演算の分配法則ね。
ところで、問題の出典はなに?
715:132人目の素数さん
23/06/23 05:50:09.06 byiWAdiO.net
お前らすげぇなぁ呪文かよ
なんとなくスレを開いてみたが中卒だから全く分からんわ、震える
716:132人目の素数さん
23/06/23 06:29:44.05 IJIqwPvO.net
サイコロを6個投げて出た目が重複しなかった目の合計を点数とする。
例:
4 5 2 1 5 6 ならば 4+2+1+6=13点
2 4 2 3 1 4 ならば 3+1=4点
(I) 何点になる確率が最も高いか?
(II) 点数の期待値を求めよ?
これは手作業だと難しそう。
総当たりプログラムで答はだせるけど。
717:132人目の素数さん
23/06/23 07:53:28.25 dJ5F6hR/.net
>>696
(x-3)(x-5)=0でxの値が判明するのはなぜなのかをしっかり理解出来てるか?
積が0になるのは因数のいずれかに0があるときだけ
(x-3)(x-5)=0なら、x-3=0またはx-5=0だと言えるからx=3またはx=5となる
(a-b)(a^2+ab+b^2-3)=0の場合、すでに因数分解(因数の積の形になっている)されており、
a-b=0またはa^2+ab+b^2-3=0と言える
そしてa-b≠0という条件があるのならa-b=0は不適
従ってa^2+ab+b^2-3=0だけが残る
>>687を見るとこれらのことを理解出来ているように思えない
そこでは最初からa-b≠0という条件を利用して両辺をa-bで割り、a^2+ab+b^2-3=0を求めているだけ
等式は0以外の値で割っても成り立つから、a-b≠0という条件があるならa-bで割ることが出来る
a-bの部分からは解は得られないから無視していい
718:132人目の素数さん
23/06/23 08:00:17.74 644ByC13.net
f=\(x){
re=0
for(i in 1:6){
if(sum(i == x)==1) re=re+i
}
re
}
719:132人目の素数さん
23/06/23 08:52:12.35 dJ5F6hR/.net
なぜそうするのかを理解しようとせず、やり方だけ覚えようとするとこんなことでもわからなくなっちゃうんだな
720:132人目の素数さん
23/06/23 09:14:53.44 OeeGjtik.net
>>704
a-b≠0なんだから、残りの因子 a^2+ab+b^2-3が0でなくてはならないと表現してもいいし、
a-b≠0なんだから、両辺に1/(a-b)をかけて同値な式変形ができるでもいい。
それだけのことなんじゃないの?
721:132人目の素数さん
23/06/23 09:28:41.55 aDOXvMbH.net
>>707
それだけのことだね
でも質問者はそれがわからないらしい
722:132人目の素数さん
23/06/23 09:34:34.16 OeeGjtik.net
そういうわからない人からの質問に答えるのがこのスレの本来の主旨のはずなので、
回答してあげてるのは良いことだと思うよ。
出題厨と問題を解きたいだけの馬鹿な連中がこのスレのほとんどを占めてる現状は嘆かわしいね。
723:132人目の素数さん
23/06/23 09:49:49.14 IR+cvwKt.net
3^k+40=n^2
をみたす正整数の組(k,n)をすべて求めよ。
724:132人目の素数さん
23/06/23 10:00:05.26 tLTN/Kf1.net
>>703
いつか取り組んでくれる人が現れる日が来るといいですね
725:132人目の素数さん
23/06/23 10:00:35.98 MFPwFl0+.net
3ᵏが( mod 5) のsq. res.
∴2 | k
726:132人目の素数さん
23/06/23 11:48:12.58 644ByC13.net
>>711
東大合格者でないと無理じゃね?