23/06/11 16:22:28.28 5t3/bu9Q.net
>>520
>> 一方、人の思考は一階述語論理限定じゃないよね
> 一階述語論理で表せない例を示せ
ホイよ
URLリンク(ja.wikipedia.org)
ゲーデルの不完全性定理
1977年、パリスとハーリントンは、ラムゼーの定理の一種であるパリス=ハーリントンの定理が、一階算術の公理体系であるペアノ算術の下では決定不能だが、より大きな二階算術の体系では証明できることを証明した。
不完全性定理が成立しない体系
不完全性定理が成立しない例としてはユークリッド幾何学[15]、プレスバーガー算術[16]、実閉体と代数的閉体の理論におけるタルスキの定理などがある[16]。
不完全性定理は「『帰納的公理化可能な自然数論を含む理論が、無矛盾(ω無矛盾)であれば』~」という形の定理である。したがって、帰納的公理化可能であっても自然数論を含まない公理系や、帰納的公理化可能でない理論が完全であっても、不完全性定理とは矛盾しない。
真の算術やペアノ算術の無矛盾完全拡大などは無矛盾かつ完全であるが、帰納的公理化可能でない。とくに真の算術は算術的に定義不能である。この結果はタルスキの真理定義不可能性として知られる。
つづく