ガロア第一論文と乗数イデアル他関連資料スレ4at MATH
ガロア第一論文と乗数イデアル他関連資料スレ4 - 暇つぶし2ch267:132人目の素数さん
23/05/22 15:49:43.66 GU3MIcVP.net
>>247
>>なぜ3次元以上ではそのような拡張ができないのか
いろんな数学で、特殊な次元が存在する例がある
・例えば、M理論の10次元とか11次元とか
・例えば、Leech latticeの24次元とか(下記)
・”なぜ”という問いに対する答えは、なかなか難しいよね、納得できる回答
URLリンク(ja.wikipedia.org)
M理論
M理論(Mりろん)とは、現在知られている5つの超弦理論を統合するとされる、11次元(空間次元が10個、時間次元が1個)の仮説理論である。尚、この理論には弦は存在せず、2次元の膜(メンブレーン)や5次元の膜が構成要素であると考えられている。
超弦理論との関係
超弦理論が1980年代に物理学界で話題になると研究が急速に進み、超弦理論は5つの異なるバージョンに発展した。それらの5つのバージョンの超弦理論はそれぞれ、I型、IIA型、IIB型、ヘテロSO(32)、ヘテロE8×E8と呼ばれる。これらの5つのバージョンを統合するのがM理論である。
URLリンク(en.wikipedia.org)
One approach to formulating M-theory and studying its properties is provided by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence.
6D (2,0) superconformal field theory
ABJM superconformal field theory
URLリンク(en.wikipedia.org)
Leech lattice
In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by John Leech (1967). It may also have been discovered (but not published) by Ernst Witt in 1940.
The vertex algebra of the two-dimensional conformal field theory describing bosonic string theory, compactified on the 24-dimensional quotient torus R24/Λ24 and orbifolded by a two-element reflection group, provides an explicit construction of the Griess algebra that has the monster group as its automorphism group. This monster vertex algebra was also used to prove the monstrous moonshine conjectures.


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch