23/05/21 19:49:43.31 bq+56Klo.net
>>226 追加
通るかな?
これ、面白いな
URLリンク(genkuroki.github.io)
くろき玄、「共形場理論と保型形式論」、1993年8月における Young Summer Seminar で話した内容のまとめ。 (PDF)
古くから数の世界と函数の世界のあいだには多くの類似があることが知られている。たとえば (有理) 整数と (一変数の) 多項式函数はよく似た性質を持ち、有理数と有理函数、無理数と無理函数、代数的数と代数函数、超越数と超越函数のように数と函数に同じ形容詞を付けることができる。代数体 (=有理数体の有限次拡大) と複素数体上の代数函数体 (=コンパクト Riemann 面上の有理型函数全体のなす体) はよく似ている。 (それら二つのあいだに有限体上の代数函数体をはさむと類似の関係がさらに見やすくなるというのが A. Weil による有名な古典的アイデアである。)
この類似のもとで「代数体と代数群から得られる保型形式」の対応物は「コンパクト Riemann 面上の主束のモジュライ空間上の直線束の大域切断」=「affine Lie 代数の対称性を持つ共形場理論における conformal block」であることがわかる。つまり、共形場理論は保型形式論のコンパクト Riemann 面での類似物なのである。
URLリンク(genkuroki.github.io)
共形場理論と保型形式論
くろき玄
1 序
昔1、何も知らない私は次のような質問をしたことがある:
「Riemann 面の上の共形場理論の Spec Z 上の類似物2は何か?」3
そのときには解答を得ることができなかった。しかし、この問の答は非常に簡単である:
「それは古くから研究されている保型形式論である」
この解説文の目的はこのことを説明することである4
1私が大学院博士課程前期の 1 年生のとき (今から約 5 年前)
2より一般には代数体 (すなわち有理数体 Q の有限次拡大体) もしくは有限体上の曲線に対する類似
物を考えるのが自然である。Spec Z は Q の場合に対応しているが、無限素点も考慮しなければいけないので、Spec Z と書くべきかもしれない
3この質問は「共形場理論が Z 上の構造を持つか?」とは一応異なる。その方向も「共形場理論は数
論的幾何学の構造を持つか?」に関係していて興味深い。残念ながらこの解説ではこれ以上その方向に触れることはできない
4以下、イイカゲンなことも書く予定である