23/05/21 18:32:59.28 bq+56Klo.net
>>224
スレ主です
ありがとう
ついでに 下記くろき玄 貼る(”くろき”がNGワードらしい)
これでも見たら?
なお、ド素人なので、中身は聞かれてもわからん
くろき玄に聞いてねw
<URLが通らないので検索請う>
くろき玄の文書置き場
2017年6月10日更新 (2008年9月19日作成)
くろき玄、「共形場理論の定式化について」、1995年8月における京大数理研における講演のまとめ、研究会「群の表現論と等質空間の解析学」、1995年7月31日~8月3日、主催者:齊藤睦、数理解析研究所講究録 No. 929 (1995)、 103--134 に掲載 (最新の訂正版:PDF)
曲線やバンドルの変形をどのように共形場理論と結び付けるかに関するノート。このノートを見れば Virasoro 代数と affine Lie 代数の中心拡大の部分と代数曲線上の幾何の関係がわかる。共形場理論は曲線および曲線上のバンドルの変形理論を場の量子論の言葉を使って書き直したものとみなせる。
<URLが通らないので検索請う>
共形場理論の定式化について
くろき 玄
東北大学大学院理学研究科数学専攻
2003 年 12 月 26 日 (月) 第 7.1 版 (1995 年 11 月 2 日初版)
1 共形場理論の枠組でとらえられる色々な例
この節では共形場理論の枠組でとらえられる例にはどのようなものがあるかについて説
明する. 主に [BPZ] の model と Wess-Zumino-Witten model に関係した場合を扱う.
共形場理論の数学的解釈には色々な流儀があるが, このノートにおいては, 共形場理論
を compact Riemann 面とその上の特定の幾何構造 (例えば, principal G-bunlde やその上
の quasi parabolic structure) の family とそれに付随して現われる無限次元代数の表現の
組に対して, family の base space 上の線型微分方程式 (twisted D-module) を対応させる
仕組としてとらえる.
例 1.1 (BPZ model). 共形場理論は [BPZ] において初めて定式化された.
BPZの modelにおける conformal block の理論は, 数学的には, compact Riemann 面とその上の N 個
の点の組 (X; Q1, . . . , QN ) の family の上の理論として定式化される.
4 最後に
最後に詳しく触れることができなかった点について少しコメントしておこう.
略