ガロア第一論文と乗数イデアル他関連資料スレ4at MATH
ガロア第一論文と乗数イデアル他関連資料スレ4 - 暇つぶし2ch163:132人目の素数さん
23/05/16 16:40:18.02 iUizzl9G.net
>>147
>メンショフの定理
メンショフ さんは、下記 Menshov、Menchoff
メンショフの定理は、下記のLooman?Menchoff theoremが近い気がするが、不明(実力不足w)
なお、検索:"Menchoff" theorem conformal complex regular function 約 58 件 (0.54 秒)
これを全部掘れば、何か当たるかもだが、ギブアップしますw
URLリンク(en.wikipedia.org)
Dmitrii Menshov
Dmitrii Evgenevich Menshov (also spelled Men'shov, Menchoff, Men?ov, Menchov; Russian: Дми?трий Евгeньевич Меньшoв; 18 April 1892 ? 25 November 1988) was a Russian mathematician known for his contributions to the theory of trigonometric series.
He proved the Rademacher?Menchov theorem, the Looman?Menchoff theorem, and the Lusin?Menchoff theorem.
Menshov was an Invited Speaker of the ICM in 1928 in Bologna and in 1958 in Edinburgh.[1]
URLリンク(en.wikipedia.org)
Looman?Menchoff theorem
In the mathematical field of complex analysis, the Looman?Menchoff theorem states that a continuous complex-valued function defined in an open set of the complex plane is holomorphic if and only if it satisfies the Cauchy?Riemann equations. It is thus a generalization of a theorem by Edouard Goursat, which instead of assuming the continuity of f, assumes its Frechet differentiability when regarded as a function from a subset of R2 to R2.
A complete statement of the theorem is as follows:

つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch