23/04/10 23:24:01.22 CYH9Manj.net
>>82 補足
wikipediaの 線型独立、Linear independenceに行列式書いてあるね
”An alternative method relies on the fact that
n vectors in {R} ^{n} are linearly independent if and only if the determinant of the matrix formed by taking the vectors as its columns is non-zero.”
か・・
言われてみればなるほどです
URLリンク(ja.wikipedia.org)
線型独立
n 本のベクトルが線型独立(英: linearly independent)または一次独立であるとは、それらのベクトルが張る空間が n 次元部分線形空間になることである。
具体的には、n 本のベクトル v1, …, vn が線型独立であるとは、
c_{1},・・・,c_{n} をスカラーとして、
Σ {i=1}^{n} c_{i}{v}}_{i} = → c_{1}=・・・=c_{n}=0
が成り立つことである(#定義)。
線型独立でないことを線型従属(一次従属)という。
行列式による別法
別の方法は
{R} ^{n} の n 個のベクトルが線型独立であることとベクトルをその列として取ることによって形成される行列の行列式が 0 でないことは同値であるという事実を用いる。
URLリンク(en.wikipedia.org)
Linear independence
Evaluating linear independence
Alternative method using determinants
An alternative method relies on the fact that
n vectors in {R} ^{n} are linearly independent if and only if the determinant of the matrix formed by taking the vectors as its columns is non-zero.