ガロア第一論文と乗数イデアル他関連資料スレ3at MATH
ガロア第一論文と乗数イデアル他関連資料スレ3 - 暇つぶし2ch812:132人目の素数さん
23/05/04 14:55:40.04 RJvsqXE+.net
>>730
>>頭悪そう
うまい答えが思いつかないときの
常套句
>>ド田舎の中卒か
田舎の中卒にでも数学に限ればこの程度なら書ける↓

As is well known, Riemann's idea was realized,
or rather justified, by Hilbert and Weyl, and then
further extended by Hodge and Kodaira.
In particular, Kodaira characterized projective algebraic varieties
as compact complex manifolds which admit positive line bundles,
by establishing a cohomology vanishing theorem.

Demailly's thesis is one of the generalizations of
Kodaira's vanishing theorem. Demailly proved a
vanishing theorem with L^2 estimates on complete K\"ahler
manifolds under the semipositivity conditions on the curvature of
the bundles. It was first observed by Grauert that complete
K\"ahler metrics live naturally on Stein manifolds as well as on
quasi-projective manifolds. The reason why Demailly's L^2
vanishing theorem is effective in algebraic geometry is that L^2
holomorphic functions extend analytically across proper analytic
subsets of the domains in C^n as in the case of Riemann's
removable singularity theorem in one variable.


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch