23/04/05 18:34:19.28 joMjBMfa.net
>>6
つづき
逆行列・擬逆行列
体 K に成分を持つ正方行列 M が可逆であるのはその行列式が 0 以外であるときであり、かつそのときに限る。M の行列式が 0 ならば M は(左または右逆元のうち一方が存在すれば、それは他方の存在を導くから)片側逆元を持つことも不可能である(詳細は正則行列を参照)。もっと一般に、可換環 R 上の正方行列が可逆であるための必要十分条件は、その行列式が R の可逆元であることである。
階数落ちしていない (full-rank) 非正方行列は片側逆元を持つ[2]。
URLリンク(ja.wikipedia.org)
正則行列
正則行列(英: regular matrix)、非特異行列(英: non-singular matrix)あるいは可逆行列(英: invertible matrix)とは、行列の通常の積に関する逆元を持つ正方行列のことである。この逆元を、元の正方行列の逆行列という。
定義
n 次単位行列を En や E で表す。 環の元を成分にもつ n 次正方行列 A に対して、
AB=E=BA
を満たす n 次正方行列 B が存在するとき、A は n 次正則行列、あるいは単に正則であるという[1]。A が正則ならば上の性質を満たす B は一意に定まる。 これを A の逆行列(ぎゃくぎょうれつ、英: inverse matrix)と呼び、A?1 と表す[2]。
URLリンク(ja.wikipedia.org)
環の零因子(英: zero divisor)とは、環の乗法において、
零以外の元と掛けたのに零となるような積が、少なくとも一つ存在する
ような元のことである。 これは環の乗法における因子の特別な場合である。
定義
環 R の元 a は、 ax=0 となる x≠ 0 が存在するとき、すなわち
∃x∈R\{0}:ax=0
を満たすときに
左零因子(英: left zero divisor)と呼ばれる。
同様に、環の元 a が右零因子とは、ある y ≠ 0 が存在して ya=0 となることである。
左または右零因子である元は単に零因子と呼ばれる[2]。左かつ右零因子である元 a は両側零因子(two-sided zero divisor)と呼ばれる
環の零因子でない元は正則である(regular)または非零因子(non-zero-divisor)と呼ばれる。0でない零因子は0でない零因子(nonzero zero divisor)または非自明な零因子(nontrivial zero divisor)と呼ばれる。
(引用終り)
以上