23/04/25 23:48:27.03 T/Ps2Q8E.net
>>347 戻る
>いくつかの多面体に分割できる図形→位相多様体として、下記の”(オイラーの多面体定理)”のようなイメージと思いますが
>ドーナツの表面とか曲面の話が、突然多面体という平面で囲まれた図形になって、飛躍がありそう
>(多面体は、曲率0の平面のみを使いますから)
ちょっと思い出してきたけど
これ、位相幾何学の単体分割の話でしたね
だから、微分可能性を考えない位相幾何学で、多面体に分割できる図形の話ですね
一方、ドーナツの表面とか曲面は、"manifold"でdifferentiableの話で
ここは、ちょっと話が飛躍した感がありましたね
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
単体 (数学)
位相幾何学において、n 次元の単体(たんたい、英: simplex)とは、「r ? n ならばどの r + 1 個の点も r ? 1 次元の超平面に同時に含まれることのない」ような n + 1 個の点からなる集合の凸包のことで、点・線分・三角形・四面体・五胞体といった基本的な図形の n 次元への一般化である。
単体は単体的複体や鎖複体などの概念を与えるが、これらはさらに抽象化されて、幾何学を組合せ論的あるいは代数的に扱う道具となる。また逆に、抽象化された複体の概念から単体が定義される。