23/04/25 15:26:11.81 UNyZNgm8.net
>>343
確かに
8行目までと9行目からは
全くつながりませんね
書きかけの文章の一部だけなので
「この種の問題」が何を指すかが
全く分かりません
これは判定を御願いする文章としては
不適当でした。
これならどうですか
形の決定に限らず、何かを選び出すときにいくつかの数値が
基準になりますが、その基準として何をとるかを教えるのが
「スモール・イズ・ビューティフル」という原理です。
これは正式には最小作用の原理と呼ばれ、
元は数学ではなく物理学の原理です。例としては
光は最短時間で到達できる経路を通る
というフェルマーの原理が有名ですが、数学の問題としては
次が一つの例題になります。
問題1.円に外接する三角形の中で面積が最小になるものは何か。
答えが正三角形であることは直観的には明らかでしょうが、実際、
2頂点ABを固定したままで他の頂点Cを動かして三角形を変形するとき、
内接円の半径dを一定に保ったまま△ABCの面積を最小にするものは
二等辺三角形であることが微分法を用いた計算で確かめられます。
つまり、△ABCが鋭角三角形の場合ですと、AB=1としてABを底辺としたときの高さを$h$とし、$C$から$AB$に下した垂線の足$H$が$AB$を$x:1-x$に内分するとします。すると$△ABC$の面積を二通りの式で表して得られる等式
h=d(\sqrt{x^2+h^2}+\sqrt{(1-x)^2+h^2}+1)
が得られます。hをxで微分して解くことになりますが、
この式の両辺を微分してh'(x)=0と置いた式の解は
x=1/2のみであることが分かり、∠Aまたは∠Bが鈍角の場合に
hを表す式がh=d(\sqrt{(1+x)^2+h^2}+\sqrt{x^2+h^2}+1)
(HはABを1+x:xに外分)となることにも注意すれば、
PがAB内にあるときのx=1/2が答えであることがわかります。