ガロア第一論文と乗数イデアル他関連資料スレ3at MATH
ガロア第一論文と乗数イデアル他関連資料スレ3
- 暇つぶし2ch213:Bこれらの結果は、単連結でコンパクトな滑らかな 4次元多様体の分類は非常に複雑であることを意味している。現在、この分類が妥当であるというもっともらしい予想はない(いくつかの早い段階の予想は、すべての単連結な滑らかな 4次元多様体は、代数曲面、あるいは、シンプレクティック多様体の向きを保つ連結和かもしれないという予想があったが、否定された)。 4次元での特別な現象 多くとも次元 3 以下の低次元の方法により証明できる多様体に関しての基本定理がいくつかあり、少なくとも次元が 5 以上の高次元の全く異なる方法もいくつかあるが、しかし、それらは 4次元では誤りとなる。ここにいくつかの例を挙げる。 ・記事低次元トポロジーの中の 4次元でのその他の特別な現象に掲げてある例。 https://ja.wikipedia.org/wiki/%E4%BD%8E%E6%AC%A1%E5%85%83%E3%83%88%E3%83%9D%E3%83%AD%E3%82%B8%E3%83%BC 低次元トポロジー
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch