23/04/04 10:34:25.24 tCJGQSNR.net
>>888
>両者が同値というのは
>階数・退化次数の定理
>から導ける
一応フォローしておきますね(下記)
さて
>Aは零因子でない
行列の成分を、実数ないし複素数として
零因子の話は、nxnの正方行列が環を成すことを学べば、すぐに登場する話で
行列Aすべてが積の逆元を持つように、正則行列の集合を考えれば(非可換)体になるけれど
逆元を持たない場合も含めて考えれば、一般的環を成す
このとき
逆元を持たない非正則行列
↓↑
零因子の行列
という同値関係は、当然知っておくべきと思うよ
(参考)
URLリンク(ja.wikipedia.org)
階数・退化次数の定理
数学の線型代数学の分野における階数・退化次数の定理(かいすう・たいかじすうのていり、英: rank?nullity theorem)とは、最も簡単な場合、ある行列の階数(rank)と退化次数(nullity)の和は、その行列の列の数に等しいということを述べた定理である。次元定理[1]とも呼ばれる。
証明