23/04/03 23:22:28.10 xqHDPLqW.net
>>878
(大学学部の1年で学ぶ線形代数を想定して)
いま、簡単に行列の成分が、実数Rないし複素数Cからなるとしよう
実数R、複素数Cは、(可換)体であることに注意しよう(>>856 URLリンク(yoshiiz.blog.fc2.com) よしいずの雑記帳も ご参照 )
このとき、>>852よりnxn の正方行列 A が、正則行列である条件として
およそ7つの条件が示され、これらは同値である
これら7つの条件のどれかを、正則行列の定義とすることができる
ある一つの条件を満たせば、同値性から他の条件を満たすから
同様に、非正則行列の定義として、これら7つの条件のどれか一つの否定採用することができる
ある一つを否定すれば、同値性から それは他の条件を否定したことになるから
我々は、成分が実数Rないし複素数Cからなる正方行列において
非正則行列が零因子の行列であり、その逆も成り立つことを知っている(上記 よしいずの雑記帳 ご参照 )
つまり、非正則行列すなわち零因子の行列なのだ
だから、非正則行列の定義を、そのまま零因子の行列として採用してよいのだ!
これが、数学的帰結である
「零因子は環の用語」だとか、うんぬんかんぬんのアホがいるw>>878
全く無関係の あさっての議論で、そういう頭だから落ちこぼれになるのだろうねw
(参考)
URLリンク(ja.wikipedia.org)
行列
成分