ガロア第一論文と乗数イデアル他関連資料スレ2at MATH
ガロア第一論文と乗数イデアル他関連資料スレ2 - 暇つぶし2ch952:齦福フみ成り立ちます。つまり、正則行列かつ零因子であるようなものは存在しません。 よく知られているように、正則行列であるための必要十分条件は、行列式が0でないことです。後者はさらに、0が固有値でないことと同値です。この対偶を考えれば、体上の正方行列について、以下の条件がすべて同値であることがわかります。 ・零因子である ・行列式が0になる ・0が固有値の一つである 一般に、零因子には左零因子と右零因子があります。ところが、体上の行列においては、左零因子であることと右零因子であることは同値になります。しかも、Aが零因子のとき、あるOでない正方行列Xが存在してAX=XA=Oとなります(ヒント:行列Aの最小多項式を考える)。ただし、AX=Oを満たす全てのXが必ずしもXA=Oを満たすとは限りません。その逆も同様です。 (引用終り) 以上




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch