23/03/25 21:51:45.65 1W6Cag5a.net
第1回日本数学会賞小平邦彦賞 授賞題目・授賞理由
藤田 宏(東京大学・名誉教授)
授賞題目
非線形偏微分方程式に対する関数解析学的手法の研究
Study of functional analytic methods in nonlinear partial differential equations
授賞理由
藤田博士の研究分野は関数解析学および偏微分方程式論である.
純粋数学における解析学の諸定理を,数理物理学に表れる偏微分方程式,
特に非線形偏微分方程式の解法に応用し,関数解析学的手法の基礎を
築いたことは,同博士の多大な貢献である.藤田博士は,
流体力学の基礎方程式であるナビエ・ストークス方程式(N-S)に
関しては,“研究の祖父”であり,また半線形拡散方程式の
解の挙動に関しては“爆発の父”と称されている.
(N-S)の研究に対する本格的な数学的取り扱いは,
1934年にルレイによって基礎付けがなされた.
ルレイは弱解の概念を確立し,時間大域的弱解を構成したが,
その弱解は,関数としての連続性や微分可能性などの
滑らかさが保障されないという欠点があった.
「(N-S)に関して,任意に与えられた初期条件に対して時間大域的な
滑らかな解を構成できるか?」という問題が残された.
この問いに対して,藤田博士は加藤博士とともに,
1964年発表の論文において,その当時は関数解析学の抽象論であった
作用素の半群と分数冪の理論を駆使して,時間局所的な滑らかな解,
および小さな初期条件下での時間大域的な滑らかな解の存在を証明した.
純粋数学における抽象的理論を,解の公式が存在しない非線形
偏微分方程式の解法に応用して見せたのである.難解な連立非線形
偏微分方程式系を,あたかも単独常微分方程式を取り扱うごとく,
より簡素化した問題へと帰着させた同博士の着想は実に斬新であった.
また,この論文から始まった,方程式に固有のスケール不変な関数空間で
解を考察する手法は,後に“藤田ー加藤の原理”と呼ばれ,
今日非線形偏微分方程式論の根本原理とされている.
以下略
834:132人目の素数さん
23/03/25 23:19:22.01 9yv+eJYE.net
>>754
ありがとうございます
1)まず、指摘しておきたいことは
藤田 宏氏は、数学科出身ではないってこと
(物理学科ですね)
2)しかし、多分当時の先端の数学の
”作用素の半群と分数冪の理論を駆使して”
連立非線形偏微分方程式系の界を研究して
今日非線形偏微分方程式論の根本原理の“藤田ー加藤の原理”を考案した
ってこと
これで言えることは
・数学は、数学科の独占物ではないってこと
・また、物理など、関連分野との連携が大事ってこと
・その具体例が、数学側で用意した ルレイの弱解+作用素の半群と分数冪の理論→物理側“藤田ー加藤の原理”だってこと
こういうバックグラウンドがあっての>>749 大学への数学4月号巻頭言
「未来に生きる学問的な受験勉強を」なのですね
835:132人目の素数さん
23/03/25 23:41:25.21 9yv+eJYE.net
>>755
ああ、あと
私ら数学科外の人間として
自分の目の前の問題に対して、使える数学があれば、ありがたく使わせて頂くべし
そのための勉強を普段からしておくべしってことですね
学部で、単位を取るための数学だけでは足りない
というか、歴史の示すところ、いま最先端といわれる純粋数学が、時間が経つと数学外の応用分野で使われる事例多数
純粋数学を、数学科の落ちこぼれが、神格化して神棚にまつって、「これは
836:数学科以外にはムリ」とかいうやついるけど それが、思想が低いってことだ (参考) https://www.ms.u-tokyo.ac.jp/~yasuyuki/suri0404.pdf 数理科学 NO. 490, APRIL 2004 特集/演算子・作用素の魅力 演算子・作用素というパラダイム 河 東 泰 之 1. 演算子・作用素とは何か 演算子・作用素はいずれも英語の operator の訳 である.伝統的に物理学では演算子と訳され,数 学では作用素と訳されているので,本特集でも著 者によってそれぞれの用語が使われているが同じ 物を指している.(ついでに中国語では算子と訳し ている.)以下本文でいちいち両方並べるのもわず らわしいし,私は数学者なので,ここでは作用素 と言うことにしよう.作用素とは,ある集合から ある集合への写像のことであり,この「集合」や 「写像」にどのくらいの条件を課すかは場合によ るが,普通は集合としてはベクトル空間くらいを 要求してその上での線形写像を考えることが多い. (非線形の微分作用素もたくさんあるが.)ベクト ル空間の係数は任意の体でもよいが,解析的なこ とを考えるときはたいていは複素数か実数である.
837:132人目の素数さん
23/03/26 07:02:43.97 ugAJTfFu.net
>>756
> 自分の目の前の問題に対して、
> 使える数学があれば、
> ありがたく使わせて頂くべし
線形代数は使えませんか? なぜ?
行列式は使えませんか? なぜ?
> そのための勉強を普段からしておくべし
線形代数の勉強はなさらないのですか? なぜ?
> いま最先端といわれる純粋数学が、
> 時間が経つと数学外の応用分野で使われる事例多数
線形代数も行列式も、応用分野で沢山使われてませんか?
> 純粋数学を、
> 「これは数学科以外にはムリ」
> とかいうやついるけど
> それが、思想が低いってことだ
線形代数を理解もせず使えもしないのに
「大学1年の数学」と馬鹿にするのが
高い思想なんですか?
なんか思い上がってませんか?
なんか狂ってませんか?
なんか病んでませんか?
数学って他人の上に立つマウントの手段なんですか?
そもそもなんで他人にマウントしたがるんですか?
他人が嫌いなんですか?
838:132人目の素数さん
23/03/26 07:17:42.02 ugAJTfFu.net
>>755
> ・数学は、数学科の独占物ではない
そうですよ
そもそも、いつだれがどこで
「数学は、数学科の独占物だ」
と宣言したんですか?
今ここで私が?いいませんよ、そんな馬鹿なこと
幻聴でしょう
ただ、数学科の人は数学それ自体に興味を持っていることに対して
物理学科など他学科の人は、数学を手段と割り切っているのは
明確な違いといえますね
要するに数学は誰のものでもあるけれども
その見え方は人それぞれ、ということです
抽象化は数学の研究においては実に有益ですが
一方数学の利用に関してハードルを高めてしまっている
大学1年の線形代数でも抽象化すると
とたんに工学系の学生を中心に落ちこぼれが大量発生します
線形空間・線形独立・線形写像・像・核・階数・行列式
計算方法ではなく性質に基づく定義を始めると
確実に「わけわかんない ついていけない」と落ちこぼれます
言ってることが理解できない、というわけではないと思います
ただ、なんで、そんなことするのかがわからないのでしょう
証明を読まないならたしかに意図は永遠にわからないでしょう
数学の利用者は定理が示す解答の具体的な計算法しか興味ない
いかなる前提(公理)によっていかなる推論(証明)により
結論(定理)がなりたつのか そういうことはどうでもいいようです
それが数学科の人にとっては、つまらん奴と思えるわけです
数学それ自体に何の興味も持ち得ないなんて
839:132人目の素数さん
23/03/26 07:31:19.59 ugAJTfFu.net
工学系の人は
1.線形空間ではなく数KのN組K^nという具体物だと理解したがる
2.線形写像ではなく数Kの方形の羅列である行列という具体物だと理解したがる
3.性質だけ定義するの�
840:ナはなく、具体的に求める方法を示されないと理解したと思えない 4.複数の同値な定義があるとそれだけで混乱する 行列式の場合、よく置換とその符号による定義式が示されます これは具体的に計算可能な方法を示していますが 実はその通りに計算すると実に手数がかかって非効率的です 行列式を多重交代線形形式として定義した場合、 その値を計算する方法を具体的に提示していませんが 実はその性質から消去法で計算できることがわかります そしてそのほうが断然効率的です 工学系の学生の安直な想像とは裏腹に 線形代数でも抽象的な性質による定義のほうが はるかに有用なのです 大学1年の線形代数を正しく理解すれば そのことがわかるのですが、残念ながら 多くの工学系の学生は数学そのものには まったく興味がないので、「お宝」に気づかないまま 大学を卒業していきます もったいない!!!
841:132人目の素数さん
23/03/26 08:02:30.99 P7rbLzdx.net
>>759
数学科で落ちこぼれて35年のおサルw スレリンク(math板:35番)
落ちこぼれて35年で数学の勉強法も大きく変わったようだね
>>750より
URLリンク(www.math.is.tohoku.ac.jp)
東北大学大学院情報科学研究科 システム情報科学専攻 尾畑研究室-システム情報数理学II研究室-
2022年度後期
数理統計学概論(教育学部・歯学部・医学部1年生向け) 木曜日3講時
【目的と概要】 さまざまな分野で必要とされるデータ解析の数理的基礎を担うのが確率と統計である。 この講義では、確率変数とその期待値・分散などの確率の基礎概念から始めて、 統計学に必要な確率分布について学ぶ。次いで、統計的推論の考え方を理解して、 母数の点推定・区間推定の方法、仮説検定の基本的な形式を学ぶ。 また、Python による簡単なプログラミングを体験する。
Python プログラミングのヒント Python Guide (PDF)
PG01. データファイルへのアクセス
PG02. 1変量データの可視化
PG03. 1変量データの統計量
(引用終り)
あなたは、大学の確率論も落ちこぼれ、単位は取れなかったようですねw
なので、時枝が分からないみたいだw スレリンク(math板)
さて、線形代数も、同じようになってくると思うよ
PythonやMathematicaでも使いながら、講義をするようになるだろう
私が、線形代数で落ちこぼれたと言いたいらしいが、昔は中学で3元連立方程式の裏技解法で、クラメールの公式を教えたものだ
URLリンク(ja.wikipedia.org)
3x3の行列と行列式は中学校で習ったから、大学の線形代数なんてその延長で、違和感も何もなかった
おっさんは、正則行列の関連で「零因子行列の話だろ? 知っているよ」と言ったとき
「関係ない話だ~!」と絶叫していたねw。哀れな落ちこぼれだったw
URLリンク(izumi-math.jp) 行列における零因子の構造
842:132人目の素数さん
23/03/26 08:36:56.26 i+JbTcrf.net
そういえば、おらは線形代数講義は一回だけでたな。あとは、しらん
843:132人目の素数さん
23/03/26 08:43:27.00 a6taivTe.net
>>761
取れた数学の単位は?
844:132人目の素数さん
23/03/26 08:45:04.95 P7rbLzdx.net
>>754
ありがとう
原文URL
URLリンク(www.jstage.jst.go.jp)
数学誌 2020年4月号
"藤田・加藤の原理"
関連
URLリンク(www.jstage.jst.go.jp)
数学誌
クレイ数学研究所 ミレニアム懸賞問題解説
Navies-Stokes方 程 式
小薗 英雄 (2001年9月28日 提出)
(藤田・加藤の原理の詳しい説明が、P74にある)
845:132人目の素数さん
23/03/26 09:10:21.41 i+JbTcrf.net
いちやずけで、教科書読んで余裕
846:132人目の素数さん
23/03/26 09:47:57.34 ugAJTfFu.net
>>760
> 線形代数も、PythonやMathematicaでも使いながら、
> 講義をするようになるだろう
数式処理の使い方さえ教えてくれればいい
と開き直ってるようだが、だとしたら実に情けない
> 私が、線形代数で落ちこぼれたと言いたいらしいが、
違うんですか?
> 昔は中学で3元連立方程式の裏技解法で、クラメールの公式を教えたものだ
クラメールの公式を使うには行列式を計算する必要がありますが
行列式、計算できますか?
3元に限らず、10元でも100元でも
> 3x3の行列と行列式は中学校で習ったから、
> 大学の線形代数なんてその延長で、違和感も何もなかった
n次元での話を学ばなかったので
違和感を全く感じなかったということですね
いつごろどこの私立大学で習いましたか?
国立大学ではないですよね?
> 正則行列の関連で「零因子行列の話だろ? 知っているよ」と言ったとき
> 「関係ない話だ!」と絶叫していたね。
正則行列の条件なら、
「零因子行列であること」
はアウトですね
いかなる行列が零因子行列か述べる必要がありますから
おそらく、あなたにそういったのだと思いますが
あなたは何を述べられたか理解できず
「関係ない」としか記憶できなかった、と
残念ですね
847:132人目の素数さん
23/03/26 09:50:38.18 a6taivTe.net
>>764
学部は?
848:132人目の素数さん
23/03/26 09:51:23.04 ugAJTfFu.net
>>761 >そういえば、おらは線形代数講義は一回だけでたな。あとは、しらん
>>764 >いちやずけで、教科書読んで余裕
大学の講義に出席する必要がないというのはその通りです
本を読んで理解できるならそれで結構でしょう
ただ、大学の試験をパスするだけなら、
そもそも理論を理解する必要もない
計算方法だけわかれば試験問題は解けるからです
それで線形代数を理解したと思うなら
それは全くの誤りですが
そんなことにも気づかずに人生終われるなら
それはそれで幸せというものでしょう
849:132人目の素数さん
23/03/26 11:27:37.72 P7rbLzdx.net
>>1 戻る
ところで、Minimal modelで Birkar,Cascini,Hacon,McKernan(BCHMと略す(2010 下記))の話を知ったのは
ここ数学板で、2012年に望月IUT論文が公開されてたころだった
フィールズ賞が話題になり、Minimal modelで下記BCHMのかなり決定的な論文が出たとの情報だった
Minimal modelは、森重文氏のフィールズ賞受賞の記事を読んだことがあって、それは記憶に残った
BCHMの背景に、乗数イデアルがあることは、このスレで教えてもらった
(参考)
URLリンク(en.wikipedia.org)
Minimal model program
Higher-dimensional minimal models
The existence of the more general log flips was established by Vyacheslav Shokurov in dimensions three and four. This was subsequently generalized to higher dimensions by Caucher Birkar, Paolo Cascini, Christopher Hacon, and James McKernan relying on earlier work of Shokurov and Hacon, and McKernan
・Birkar, Caucher; Cascini, Paolo; Hacon, Christopher; McKernan, James (2010), "Existence of minimal models for varieties of log general type", Journal of the American Mathematical Society arXiv:math/0610203
(引用終り)
さてWBCの野球でいえば、野球は9人でやるもの。外野手が内野の守備が出来なくても何の問題もない
同様、物理出身の藤田宏氏が、実際がどうかは別として、ε-δや関数の連続や位相空間に多少うといところがあるかないかを問うのは、筋違いも甚だしい
(物理学者は物理学者であって、数学の全分野を網羅的に熟知する必要はない)
さらに、Birkar氏はフィールズ賞を貰ったわけだが、いまBCHMが共著論文であることを指摘しておく
ここにBirkar氏の貢献がどれだけあるのかは、知らない
しかし、BCHM論文の2010年当時、Birkar氏が仮に他者の貢献部分で知らない部分があったとしても
それは、だれも問題視しない
早く論文を完成させ公表して、4名の優先権を確保することが重要だ(他の論文が先に出てしまったら大問題)
要するに、世の中いろいろ役割分担があるんだ
それを無視して、他人をああだこうだ
それ数学科で落ちこぼれたおサルの嫉妬とヤクザの因縁じゃん スレリンク(math板:5番)
850:132人目の素数さん
23/03/26 11:56:36.95 P7rbLzdx.net
>>765
(引用開始)
> 正則行列の関連で「零因子行列の話だろ? 知っているよ」と言ったとき
> 「関係ない話だ!」と絶叫していたね。
正則行列の条件なら、
「零因子行列であること」
はアウトですね
いかなる行列が零因子行列か述べる必要がありますから
おそらく、あなたにそういったのだと思いますが
(引用終り)
あんた、上記の自分の文章を読み返して
おかしいと気づかないか?
(まあ、零因子行列に無知なんだろう。というか、”零因子”わかる?w)
零因子行列の文献を念のために付けたのに (URLリンク(izumi-math.jp) 行列における零因子の構造>>760)
これ読んでないんだろうね(つーか、これを読まないといけないようじゃ、線形代数の何を大学数学科で勉強したのやら)
851:132人目の素数さん
23/03/26 13:11:33.44 P7rbLzdx.net
>>768
余談ですが
勉強の比重は、およそ本業系5、数学2、物理1、コンピュータ1 計10
数学2、物理1は、本業系の文献を読む基礎としてでもあります
コンピュータ1は、実務で使いますから
なので、数学2だから、数学科の人と同じだけの時間は割けないわけで
穴はあるだろうし、理解が浅いところがあるだろう
大体は、微分方程式系の勉強です
佐藤超関数(主に一変数)も、かじった
偏微分方程式の勉強は勿論だが、偏微分方程式は数値解法が発展して
コンピュータ技術の進歩とともに、どんどん解けるようになった
(有限要素法とかね。このベースに、線形代数がある)
ガロア理論は、余技です
なお、Navies-Stokes方程式 が、クレイ数学研究所 ミレニアム懸賞問題になったのは
気象予報とかに直結するからでしょうね
真鍋さんのノーベル賞関連の問題ですね URLリンク(ja.wikipedia.org)
URLリンク(manabitimes.jp)
高校数学の美しい物語
ミレニアム懸賞問題の概要と大雑把な説明 2021/04/04
・ナビエ?ストークス方程式
流体力学の基本方程式であるナビエ?ストークス方程式という複雑な微分方程式が「それなりに性質のよい解」を持つかどうか判定せよという問題です。ナビエ?ストークス方程式をきちんと理解するのは難しいですが,雰囲気だけなら!
ちなみに,実際の流体力学でナビエ?ストークス方程式を使うときには方程式を単純化してからシミュレーションを行うことが多いです。 →ナビエ-ストークス方程式の導出
852:132人目の素数さん
23/03/26 14:27:59.12 P7rbLzdx.net
>>770 訂正
勉強の比重は、およそ本業系5、数学2、物理1、コンピュータ1 計10
↓
勉強の比重は、およそ本業系6、数学2、物理1、コンピュータ1 計10
計10になってなかった(苦笑)
本業系には、自分の専門以外の雑学(含む法律、語学)も入ります
数学は、物理や本業で出てくるので、ここをしっかりしておくのが吉です
物理も類似で、物理が分からないと、本業の論文が読めません
853:132人目の素数さん
23/03/26 15:41:38.51 g1ji05BT.net
Paul Garabedianは最近の米国の核融合炉に向けた進展を支えた
数学者の一人であると思われるが
元はAhlforsの弟子でHarvardで函数論をやっていた。
学位論文のテーマをもらったが問題の意味が解らなかったので
近くのMITにいたSchifferに「問題の意味を教えてほしい」と
質問に行った。するとSchifferは即答がてら、問題の解答も
教えてしまった。Garabedianはそれで学位論文を書き、その後
Schifferと共著論文を書いた後、
854: 流体方程式の数値解法の研究でも知られるようになった。 「機を見るに敏」というタイプは工学系では有利かもしれない。
855:132人目の素数さん
23/03/26 16:25:09.34 P7rbLzdx.net
小野孝”数論序説”を、図書館から受け取ってきた
最後のところ(文献についてのコメント)に
「勉強の段階があるところまで達したら、その学問の過去と未来を同時に見て進まねばならない
過去だけをみれば骨董趣味になる危険があり
未来だけみれば迷子になる危険がある・・」
という一文がある
なるほど
なお、”4章.円の l 分体と2次体”の
冒頭が
超越数 e=2.718281828459045・・
が、連分数e=[2,1,2,1,1,4,1,1,6,1,1,8,1,1,・・]と規則性があるのはどういうことか
eのように超幾何関数の特殊値は3次の無理量よりも2次の無理数に近いのであろうか?
で、始まっている
が、答えがない?
4章の最後の定理4.10 (オイラー・ラグランジュ)
ここの(i)(ii)とも
連分数展開が循環であるという定理だから
超越数 eの連分数展開の規則性が出るはずもない
というか、超越数 eの連分数展開の規則性に、いまの数学はうまい説明が与えられているのか?
小野孝先生は、未来を見せているのかも?
URLリンク(www.shokabo.co.jp)
数論序説
In Introduction to Algebraic Number Theory
ジョンズ・ホプキンス大学名誉教授 理博 小野孝 著
目次 (章タイトル) → 詳細目次 URLリンク(www.shokabo.co.jp)
1.ガウスの相互律まで
2.代数体の基礎概念
3.解析的方法
4.円の l 分体と2次体
(参考)
URLリンク(ikuro-kotaro.)サクラ.ne.jp/koramu2/17975_n4.htm
■eの連分数展開(その2)
オイラーはπのそれとは違って、eの連分数展開には顕著な規則性があることを発見した。
[1]eとπの連分数展開
超越数eの連分数展開は,
e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,・・・]
と書け,数字の出方が自然数順になっていることがわかります.すなわち,2次の無理数のように規則的になっているわけですが,eのように超幾何関数の特殊値は3次の無理数よりも,2次の無理数に近いということなのでしょうか?
856:132人目の素数さん
23/03/26 16:59:51.89 P7rbLzdx.net
>>772
>近くのMITにいたSchifferに「問題の意味を教えてほしい」と
>質問に行った。するとSchifferは即答がてら、問題の解答も
>教えてしまった。Garabedianはそれで学位論文を書き
Schifferさん、初耳ですが
下記かな?
Ahlforsが学位論文のテーマとした問題なら、そう簡単に解けるものでもなさそうなのに・・
いわゆる”ソルバー”(問題を解く人)ですかね
ノイマンがそのタイプだったとか
余談ですが、予想を作る人もいたり
その予想に反例を見つける人とかw
いや、もどるとPaul Garabedian氏は、「Schifferに聞けばいい」と知っていたんだ
それは、学部が終わったら、重要ですよね(学部中でも重要かも)
URLリンク(en.wikipedia.org)
Menahem Max Schiffer (24 September 1911, Berlin ? 11 November 1997)[1][2]) was a German-born American mathematician who worked in complex analysis, partial differential equations, and mathematical physics.[3]
857:132人目の素数さん
23/03/26 18:02:00.95 g1ji05BT.net
Schifferは大秀才でどこへ行っても周囲の評価は極めて高かったようだ。
Hans Lewyが(LeviやLevyじゃないよ)
有名な反例を発見したとき
自分ではなかなか信じられず
Schiffer先生にお伺いを立てたという話も有名。
ベルリン大学時代はシュレディンガーの講義にも出ていたが
シュレディンガー御大から「物理か数学か一方に絞れ」と言われて
数学で学位論文を書いた。
ただしナチ政権下だったのでテルアビブで学位記を受け取ったという。
858:132人目の素数さん
23/03/26 18:03:52.55 ugAJTfFu.net
>>769
> あんた、上記の自分の文章を読み返しておかしいと気づかないか?
いいえ 全然
> (まあ、零因子行列に無知なんだろう。というか、”零因子”わかる?)
ええ
> 零因子行列の文献を念のために付けたのにこれ読んでないんだろうね
読んでないのはあなたでしょう
読めなかった、のが正しいのでしょうが
> (線形代数の何を大学数学科で勉強したのやら)
行列式とランクは勉強しました
あなたは勉強しなかったんですね
859:132人目の素数さん
23/03/26 18:06:52.12 ugAJTfFu.net
>>770
> 余談ですが
> 勉強の比重は、およそ本業系6、数学2、物理1、コンピュータ1 計10
> 数学2、物理1は、本業系の文献を読む基礎としてでもあります
> コンピュータ1は、実務で使いますから
物理2、数学1にしたほうがいいですね
あなたが理解できる数学なら
掛ける時間はその程度でよいかと
> 大体は、微分方程式系の勉強です
> 佐藤超関数(主に一変数)も、かじった
だったらやっぱり1でいいです
> ガロア理論は、余技です
無駄なのでばっさり切りましょう
人生の時間は有限です
自分に向いてないことをやっても意味ありません
860:132人目の素数さん
23/03/26 19:00:58.66 g1ji05BT.net
線形代数の最重要のキーワードを
二つ選べと言われたら行列式とランクかもしれない。
行列式は中学生の時に本で見て重要性はすぐわかったが
それ以上線形代数を勉強しようという意欲をそがれた。
ランクは線形代数の授業で覚えた。
ランクの定義をきかれて即答したが
帰り道でふと自信がなくなり
確認している途中に
ものすごく重要なポイントだということに気づいた。
861:132人目の素数さん
23/03/26 20:13:12.01 P7rbLzdx.net
>>775
>Hans Lewyが(LeviやLevyじゃないよ)
>有名な反例を発見したとき
Lewyさんか(下記かな)
名前だけ、ちらっと見たかもというかすかな記憶が・・
ヘルマンダー以前か、さっぱりです。ヘルマンダー以降も同様ですが、超関数辺りは少しだけ
URLリンク(ja.wikipedia.org)
ハンス・レヴィー(Hans Lewy、1904年10月20日 - 1988年8月23日)は、ユダヤ人のドイツ生まれのアメリカ合衆国の数学者で、偏微分方程式と多変数複素関数に関する業績で著名である[3]。
クーラントの推薦で、レヴィーはロックフェラー奨学金を獲得し、その資金で1929年ローマに旅行し、トゥーリオ・レヴィ=チヴィタとフェデリゴ・エンリケス(英語版)と共に代数幾何学を研究し、そして1930年パリに旅行し、ジャック・アダマールのセミナーに参加した。
レヴィーは偏微分方程式への顕著な貢献で知られている。1957年の2階線型偏微分方程式の有名な例は、驚くべきもので想定外のものであったため、現代解析を重要な方法に形成しただけでなく、全分野が新しい方向へ向かった。この例に基づいて、ルイス・ニーレンバーグとラース・ヘルマンダー等は、その分野の理論と構造に対する重要な変化を概略した。これは多くの解析学者と数学者により主要な発展として受け入れられた。
URLリンク(en.wikipedia.org)
Hans Lewy
Lewy is known for his contributions to partial differential equations. In 1957, his famous example of a second-order linear partial differential equation was so stunning and unexpected that the whole field steered in a new direction, as well as shaping modern analysis in a significant way. Based on this example, Lou
862:is Nirenberg, Lars Hormander and others have outlined some important changes to the theory and structure of the field. This was adopted by many analysts and mathematicians as a major development.
863:132人目の素数さん
23/03/26 20:13:48.34 ugAJTfFu.net
>>778
行列式知らなかったらヤコビアンも逆関数定理もわかりません
ランク知らなかったら一般次元の陰関数定理もわかりません
もちろんそれだけじゃなく根本的に重要ですが
実用第一の工学部でも重要という意味で書きました
864:132人目の素数さん
23/03/26 20:28:25.43 P7rbLzdx.net
>>778
>それ以上線形代数を勉強しようという意欲をそがれた。
>ランクは線形代数の授業で覚えた。
>ランクの定義をきかれて即答したが
>帰り道でふと自信がなくなり
>確認している途中に
>ものすごく重要なポイントだということに気づいた。
ふと教える側かと思ったけど
さすがに教わる側か
ランクね
下記の互いに同値を確認したのかな
URLリンク(ja.wikipedia.org)
行列の階数
線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。
行列の階数の概念はジェームス・ジョセフ・シルベスターが考えた[3]。
定義
任意の与えられた行列 A に対して以下は何れも互いに同値である
・A の列ベクトルの線型独立なものの最大個数(A の列空間の次元)
・A の行ベクトルの線型独立なものの最大個数(A の行空間の次元)
・A に基本変形を施して階段行列 B を得たとする。このときの B の零ベクトルでない行(または列)の個数(階段の段数とも表現される)
・表現行列 A の線型写像の像空間の次元。詳しくは#線型写像の階数を見られたし。
・A の 0 でないような小行列式の最大サイズ
・A の特異値の数
文献により、上記の条件の何れかを以って行列 A の階数は定義される。
865:132人目の素数さん
23/03/26 20:30:59.46 P7rbLzdx.net
>>776
ありがとう
潔いいね
線形代数も落ちこぼれていたのか?www
866:132人目の素数さん
23/03/26 20:47:05.79 a6taivTe.net
>>781
脊髄反射的に答えたのはこれ↓
表現行列 A の線型写像の像空間の次元
これと最初の二つくらいの同値性を道々確認しながら帰った
867:132人目の素数さん
23/03/26 23:45:50.30 P7rbLzdx.net
>>783
>脊髄反射的に答えたのはこれ↓
>表現行列 A の線型写像の像空間の次元
>これと最初の二つくらいの同値性を道々確認しながら帰った
「行列はベクトル空間の変換だ」という脊髄反射か
私らは、もっと俗で
「A の行ベクトルの線型独立なものの最大個数」が浮かびます
というか、そこから習ったような気がする
余談ですが、若いときからの疑問がベクトルとテンソルの関係だった
・ベクトルや行列の発展形がテンソルか?
・テンソルは、行列やベクトルを包含しているか?
最近分かったのは、テンソルの起源が、有名なコーシーさんの応力テンソル辺りで、そこからイタリアでテンソル解析学(絶対微分学)になり、相対性理論の基礎になったこと(リーマンが病気療養でイタリアに行って交流があったとか読んだ記憶が)
つまり、テンソルは結構起源が古い
行列やベクトルとは、全く別の発想の代物だったみたいですね(もちろん、テンソルの本ではベクトルや行列との関係のちょっとした記述はあるのですが・・、多分後づけ)
ベクトルは、ハミルトンの四元数を使うマックスウェルの電磁場方程式ができて、それを改善するためにベクトル解析が発展した
これは、ヘビサイドやギブスさんの仕事で結構起源は新しい
なので線形代数で
行列式が一番古く、
行列が次で、
ベクトルが一番新しそう
で、ベクトルを(a1,a2,a3)のデカルト座標と見ると、3
868:次元空間を表し、行列はこの空間を変換しているのだと これの脊髄反射ですね さて、行列式、行列、ベクトルと並べると 行列が、一番活躍していますよね、現代数学で あと、行列は、コンピュータ処理との相性が良い やっぱり、行列は大発明ですね
869:132人目の素数さん
23/03/27 06:31:56.55 kkQN8nHd.net
テンソルと言えば
帰りの電車の中で
立方行列の意味づけについて考えていたことを
思い出します。
ずっと後になってから
テンソルの起こりが捩率の表現だったことを教わりました。
870:132人目の素数さん
23/03/27 06:46:42.28 kkQN8nHd.net
そういえば
線形代数の最初の授業で
黒板の真ん中に大きな行列を書かれ
これが正しい書き順だと言いながら
最後にかっこをつけられました。
871:132人目の素数さん
23/03/27 06:49:19.04 r6fFoijf.net
> ・ベクトルや行列の発展形がテンソルか?
> ・テンソルは、行列やベクトルを包含しているか?
やっぱスピノルだな しらんけど
872:132人目の素数さん
23/03/27 08:01:48.07 j8MHLnwB.net
>>787
ありがとう
スピノルは、ディラックが相対論的な電子の量子状態を数学的に記述する際に導入したといか、現れたというか
それで知りました
”一般のスピノルは、1913年にエリ・カルタン[4]によって発見され”とありますね
しかし、ディラックはエリ・カルタン[4]を知らなかったと思います
スピノルの命名は、ディラックでしょうね、多分
つまり、スピノル=電子のスピンを表現するもの みたいな命名かと思っています
(参考)
URLリンク(ja.wikipedia.org)
ディラックスピノル(英: Dirac spinor)とは、場の量子論においてフェルミ粒子である既知のあらゆる基本粒子(ただしニュートリノを除く)を記述するスピノル。これは、ディラック方程式の解となる平面波に現れる2つのワイルスピノルの特定の組み合わせであり、具体的にはローレンツ群の作用下で「スピノルらしきもの(spinorially)」に変わるバイスピノル(英語版)である。
URLリンク(ja.wikipedia.org)
スピノール
数学および物理学におけるスピノル(英語: spinor; スピノール[1]、スピナー)は、特に直交群の理論に於いて空間ベクトルの概念を拡張する目的で導入された複素ベクトル空間の元である。これらが必要とされるのは、与えられた次元における回転群の全体構造を見るためには余分の次元を必要とするからである。
一般のスピノルは、1913年にエリ・カルタン[4]によって発見され、後に電子や他のフェルミ粒子の内在する角運動量、即ちスピン角運動量の性質を研究するために、量子力学に適用された。
相対論的量子力学ではディラック・スピノルが相対論的な電子の量子状態を数学的に記述する際に、場の量子論では相対論的な多粒子系の状態を記述する際に、それぞれ必須の概念としてスピノルが活用されている。
873:132人目の素数さん
23/03/27 08:12:04.80 j8MHLnwB.net
>>785
>テンソルと言えば
>帰りの電車の中で
>立方行列の意味づけについて考えていたことを
>思い出します。
線形代数の大学教授が、立方行列の論文を大学紀要に投稿していました
ですが、立方行列 nxn→nxnxn への拡張は、自然な発想ですけど
あまり流行りませんね
多分、紙面に書くのに不便だからかもw
>テンソルの起こりが捩率の表現だったことを教わりました。
下記の”捩れテンソル(微分幾何学)”かな
URLリンク(ja.wikipedia.org)
ねじれ(捩れ)
(幾何学)
ねじれの位置
曲線の捩率
捩れテンソル(微分幾何学)
解析的トーション
ホワイトヘッドトーション(英語版)
(代数学)
捩れ (代数学)、torsion
Tor関手
ねじれなし加群
URLリンク(ja.wikipedia.org)
捩れテンソル
874:132人目の素数さん
23/03/27 08:45:28.09 kkQN8nHd.net
vector, tensor, spinor
and tractor
URLリンク(doi.org)
875:132人目の素数さん
23/03/27 08:51:28.87 I7VaaqIg.net
>>788
> “一般のスピノルは、1913年にエリ・カルタン[4]によって発見され”とありますね
実際にはスピノルに当た�
876:驍烽フは、 19世紀にクリフォードが考えていた クリフォード代数で検索してみ ガロア理論なんて勉強する暇があったら クリフォード代数でも勉強したほうが 余程有意義だな しらんけど
877:132人目の素数さん
23/03/27 12:02:51.50 ZryxA1Gf.net
>>190
ありがとう
tractorが、不勉強で初見だな
URLリンク(arxiv.org)
[Submitted on 23 Dec 2014 (v1), last revised 1 Aug 2015 (this version, v2)]
An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity
Sean Curry, A. Rod Gover
Abstract. The following are expanded lecture notes for the course of eight one
hour lectures given by the second author at the 2014 summer school Asymptotic
Analysis in General Relativity held in Grenoble by the Institut Fourier. The
first four lectures deal with conformal geometry and the conformal tractor calculus, taking as primary motivation the search for conformally invariant tensors
and diffrerential operators. The final four lectures apply the conformal tractor
calculus to the study of conformally compactified geometries, motivated by the
conformal treatment of infinity in general relativity.
Contents
0. Introduction 2
0.1. Notation and conventions 4
1. Lecture 1: Riemannian invariants and invariant operators 6
1.1. Ricci calculus and Weyl’s invariant theory 7
1.2. Invariant operators, and analysis 8
2. Lecture 2: Conformal transformations and conformal covariance 9
2.1. Conformal Transformations 9
P4
Also left out in these notes is any discussion of conformal spin geometry. In this
case there is again a canonical tractor calculus, known as spin tractor calculus or
local twistor calculus, which is a refinement of the usual conformal tractor calculus
in the same way that spinor calculus is a refinement of the usual tensor calculus
on pseudo-Riemannian spin manifolds. The interested reader is referred to [4, 50].
878:132人目の素数さん
23/03/27 14:00:14.43 4mEnRcTJ.net
去年奈良女子大でこの話を聴いた↓
Conformally flat models in Penrose's Conformal Cyclic Cosmology
Pawel Nurowski
We consider two consecutive conformally flat eons in Penrose's Conformal Cyclic Cosmology and study how the perfect fluid matter content of the past eon determines the matter content of the present eon by means of Penrose's reciprocity hypothesis.
Subjects: General Relativity and Quantum Cosmology (gr-qc); Differential Geometry (math.DG)
Cite as: arXiv:2102.11823 [gr-qc]
(or arXiv:2102.11823v2 [gr-qc] for this version)
URLリンク(doi.org)
879:132人目の素数さん
23/03/27 14:28:36.83 4mEnRcTJ.net
Pawel Nurowski
この人はワルシャワの研究所の教授だが
そこの創設者は
レオポルト・インフェルト(ポーランド語: Leopold Infeld, ヘブライ語: לאופולד אִינְפֶלד‎‎, 1898年8月20日 帝&王政オーストリアクラクフ大公国クラクフ市 – 1968年1月15日 ワルシャワ)は、ポーランドの物理学者。
ポーランドの古都クラクフのユダヤ人街の、�
880:C屋の息子として生まれた。 幼少より科学に興味を持ち、ポーランドを代表する理論物理学者の一人となった。 1921年にヤギェウォ大学で博士号を取り、1930年からリヴィウ大学で教鞭を執った。 ユダヤ人差別が激しくなるとアメリカへ渡り、1936年からプリンストン大学の教職に 就き、アインシュタインの弟子となった。必ずしも数学が得意ではなかった アインシュタインに対して多くの数学的助言をした。1939年からトロント大学の 教授を務め、第二次世界大戦後はワルシャワ大学の教授を務めた。 マックス・ボルンとの共同論文「ボルン=インフェルト理論」は今後、超ひも理論、 M理論の発展に大いに貢献するであろうと期待されている。 著作に、数学者ガロアの伝記小説『神々の愛でし人』や、アインシュタインとの共著 『物理学はいかに創られたか』などがある。 ラッセル=アインシュタイン宣言の署名者11人の一人。 11人の中で唯一ノーベル賞を受賞していない。
881:132人目の素数さん
23/03/27 17:07:19.22 ZryxA1Gf.net
>>792
>tractor
"tractor calculus math"で検索すると下記ヒット
2件貼る
”This is completely analogous to the more familiar tensor calculus as it has come to dominate (pseudo)-Riemannian geometry. Indeed, there is a very close link between the tractor calculus on a conformal manifold and the tensor calculus on the corresponding ambient metric [5].”か
1)
URLリンク(www.semanticscholar.org)
Corpus ID: 37351971
COMPUTING WITH THE TRACTOR CALCULUS IN CONFORMAL GEOMETRY
Jeffrey S. Case Published 2011
URLリンク(www.personal.psu.edu)
COMPUTING WITH THE TRACTOR CALCULUS IN CONFORMAL GEOMETRY
JEFFREY S. CASE Date: September 23, 2011.
1. Introduction
The tractor calculus is an efficient and powerful tool for working in conformal geometry.
In the sense used here, the tractor calculus provides a systematic method for studying conformal geometry using a distinguished family of vector bundles, the
so-called tractor bundles, together with a distinguished connection.
By construction, these bundles are intrinsically conformally invariant, and thus are particularly well-suited to problems in conformal geometry.
This is completely analogous to the more familiar tensor calculus as it has come to dominate (pseudo)-Riemannian geometry. Indeed, there is a very close link between the tractor calculus on a conformal manifold and the tensor calculus on the corresponding ambient metric [5].
つづく
882:132人目の素数さん
23/03/27 17:07:58.57 ZryxA1Gf.net
>>795
つづき
2)
(2時間もの動画)
URLリンク(www.youtube.com)
Rod Gover - An introduction to conformal geometry and tractor calculus (Part 2)
Institut Fourier 2015/06/01
After recalling some features (and the value of) the invariant ≪ Ricci calculus ≫ of pseudo-‐Riemannian geometry, we look at conformal rescaling from an elementary perspective. The idea of conformal covariance is visited and some covariant/invariant equations from physics are recovered in this framework. Motivated by the need to develop a more effective approach to such problems we are led into the idea of conformal geometry and a conformally invariant calculus; this ≪ tractor calculus ≫ is then developed explicitly.
We will discuss how to calculate using this
883:, and touch on applications to the construction of conformal invariants and conformally invariant differential operators. The second part of the course is concerned with the application of conformal geometry and tractor calculus for the treatment of conformal compactification and the geometry of conformal infinity. The link with Friedrich’s conformal field equations will be made. As part of this part we also dedicate some time to the general problem of treating hypersurfaces in a conformal manifold, and in particular arrive at a conformal Gauss equation. Finally we show how these tools may be applied to treat aspects of the asymptotic analysis of boundary problems on conformally compact manifolds. (引用終り) 以上
884:132人目の素数さん
23/03/27 17:26:18.47 4mEnRcTJ.net
conformally flat eonsの「eon」は
「岡田屋」のイオンと同じく
ラテン語のaeon(永遠)から来ているようだ。
885:132人目の素数さん
23/03/27 17:27:23.74 ZryxA1Gf.net
>>793-794
ありがとう
>Conformally flat models in Penrose's Conformal Cyclic Cosmology
Penrose'sさんね
鬼才ですね
しかし、ノーベル賞を取るとは、予想外だった
重力波の検出と、それが、ブラックホールの衝突によるものだったことが、かなり影響したかと思っています
(参考 URLリンク(ja.wikipedia.org) GW190521 GW190521(またはGW190521g、初期の名称はS190521g)[5]は、2つのブラックホールの合体によって発生した重力波信号である[2][6])
>著作に、数学者ガロアの伝記小説『神々の愛でし人』
これは、図書館で読んだかな
ガロア伝で、”理工科学校への受験に挑戦したが失敗した。伝説によれば、この時の口述試験の担当者が対数に関する愚問をしつこく出し、ガロアの回答に満足しなかったために、頭に来たガロアがその試験官に向かって黒板消しを投げつけたという[6]。URLリンク(ja.wikipedia.org) ”
が、書かれていたのは、これだった気がする
>アインシュタインとの共著
>『物理学はいかに創られたか』
うん、ありましたね
題名だけ見た記憶がある
けど中身は、見なかったと思う(記憶にない)
886:132人目の素数さん
23/03/27 17:29:43.87 ZryxA1Gf.net
>>797
>conformally flat eonsの「eon」は
>「岡田屋」のイオンと同じく
>ラテン語のaeon(永遠)から来ているようだ。
ああ、スーパーのイオンですね
ラテン語か
887:132人目の素数さん
23/03/28 10:59:33.91 2XrcpdSa.net
「永遠と一日」はよい映画
『永遠と一日』(えいえんといちにち、ギリシア語: Μιά αιωνιότητα και μιά μέρα、
英語: Eternity and a Day)は、
1998年製作のギリシャ・フランス・イタリア合作映画。
監督はテオ・アンゲロプロス。
ギリシアの港町テッサロニキを舞台に、
詩人の最期の一日と難民の子供との出会いの「人生の旅の一日」の中で
現在と過去と未来、現実と旅と夢を描いた作品。
カンヌ国際映画祭でパルム・ドール受賞。
888:132人目の素数さん
23/03/28 12:46:49.06 2XrcpdSa.net
昔からカンヌではこういうのが受ける
最近ではPLAN 75
889:132人目の素数さん
23/03/28 13:10:32.62 x3mLpGAH.net
>>792 リンク訂正 >>190→>>790
さて
>>795
>tractor
このtractorは、下記mathoverflow見るとtractor bundleの略記かな?
(xxbundle は、xx束の意味ですね(下記)。なお、代数の束は、latticeで�
890:ハもの) https://mathoverflow.net/questions/401724/cartan-geometry-jet-space-perspective-on-the-tractor-bundle mathoverflow Cartan geometry: jet space perspective on the tractor bundle jpdm Aug 14, 2021 Cartan geometryは、下記ですかね https://ja.wikipedia.org/wiki/%E6%8E%A5%E7%B6%9A_(%E5%BE%AE%E5%88%86%E5%B9%BE%E4%BD%95%E5%AD%A6) 接続 (微分幾何学) 接続の歴史 レヴィ=チヴィタはまた、1916年に、リーマン幾何学における接ベクトルの平行移動の概念を発見し、これが共変微分によって記述されることをみつけた[5](レヴィ=チヴィタ接続の名前はこのことによる)。1918年にワイルはそれを一般化して、アフィン接続の概念に到達した[6][注釈 2]。ここで「接続」にあたる語(独: Zusammenhang)がはじめて使用された[要出典]。 それからすぐに、エリ・カルタンによって、さらなる一般化が行われた。カルタンはクラインのエルランゲン・プログラムの局所化を試みていたのである。1920年代にカルタンは、微分形式を用いた記述によって、現在カルタン接続(英語版)と呼ばれるものを発見していった[7]。カルタンのこの仕事により、リーマン幾何学だけでなく、共形幾何学(英語版)、射影幾何学などのさまざまな幾何学を研究するための基礎が築かれた。 カルタンの学生にあたるエーレスマン(英語版)は、1940年代から主束やファイバー束を研究した。 1950年にコシュル(英語版)は、ベクトル束の接続の代数的定式化を与えた[9](接続 (ベクトル束)(英語版)) (引用終り) つづく
891:132人目の素数さん
23/03/28 13:11:05.34 x3mLpGAH.net
>>802
つづき
・主束(principal bundle)URLリンク(ja.wikipedia.org)
・ファイバー束(fiber bundle, fibre bundle)URLリンク(ja.wikipedia.org)
・接続 (ベクトル束)(英語版) Connection (vector bundle) URLリンク(en.wikipedia.org)(vector_bundle)
その上で、>>792の下記を見ると
URLリンク(arxiv.org)
[Submitted on 23 Dec 2014 (v1), last revised 1 Aug 2015 (this version, v2)]
An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity
で
Appendix A. Conformal Killing vector fields and adjoint tractors 65
A.1. The conformal Cartan bundle and the adjoint tractor bundle 65
A.2. Prolonging the conformal Killing equation 67
A.3. The fundamental derivative and Lie derivatives of tractors 68
とあって、Appendixの意味が、ようやくわかった
やっぱり、”tractor bundle”だったんだ
以上
892:132人目の素数さん
23/03/28 13:17:20.12 x3mLpGAH.net
>>800-801
ありがとう
893:132人目の素数さん
23/03/28 13:24:52.92 2XrcpdSa.net
コシュル=Koszulを
昔は勝手に小鶴と読んでいた。
4年前の9月の学会の特別講演で
極老のKoszulの写真を見せた人がいたが
壮年期のKoszulをよく知っている人に
「それKoszulじゃないよ」と突っ込まれて
やや返答に困っていた。
894:132人目の素数さん
23/03/28 13:34:17.62 x3mLpGAH.net
>>803
>Killing vector fields
キリングベクトルは、聞いたことがあるけど、なんだったかな・・と
これか (しょうもない注意だが、fieldは体ではなく、物理の”場”だね(書いてある通りだが))
URLリンク(ja.wikipedia.org)
キリングベクトル場(Killing vector field、別名:キリング場、Killing field)は、ヴィルヘルム・キリング(英語版)(Wilhelm Killing)の名前に因む。キリング場は、リーマン多様体や擬リーマン多様体上のベクトル場であって計量を保存するものを指す。キリング場は、等長変換群(isometry)の無限小生成子である。すなわち、キリング場により生成されるフロー (幾何学)は、多様体上の等長写像の連続群を為す。より平易に表現すると、対象の上の各点をキリング場の方向に
895:同じ距離だけ移動したときに点の間の距離の関係が保たれるという意味での対称性がキリング場により生成される。 定義 略 あと Tractor bundleは、en.wikipediaに項目あるね ”The term tractor is a portmanteau of "Tracy Thomas" and "twistor"” か、ダジャレ じゃんw 大阪人か?w https://en.wikipedia.org/wiki/Tractor_bundle Tractor bundle In conformal geometry, the tractor bundle is a particular vector bundle constructed on a conformal manifold whose fibres form an effective representation of the conformal group (see associated bundle). The term tractor is a portmanteau of "Tracy Thomas" and "twistor", the bundle having been introduced first by T. Y. Thomas as an alternative formulation of the Cartan conformal connection,[1] and later rediscovered within the formalism of local twistors and generalized to projective connections by Michael Eastwood et al. in [2]
896:132人目の素数さん
23/03/28 13:47:51.30 x3mLpGAH.net
>>805
コシュル=Koszul
なんか名前だけは、見た記憶が
下記か
画像があるね、これ使えば良かったろうに
URLリンク(en.wikipedia.org)
Jean-Louis Koszul (French: [k?syl]; January 3, 1921 ? January 12, 2018) was a French mathematician, best known for studying geometry and discovering the Koszul complex. He was a second generation member of Bourbaki.
画像アドレス
URLリンク(upload.wikimedia.org)
897:132人目の素数さん
23/03/28 14:15:12.37 2XrcpdSa.net
tractorが"Tracy Thomas" and "twistor"から来ているとは知らなかった。
うかつだった。
898:132人目の素数さん
23/03/28 16:43:54.01 LcDVbeRK.net
フランス人と話してると何かのはずみであいつはプロテスタントだからとか聞く
Koszul, Chevalley, Duflo ...
中世か
899:132人目の素数さん
23/03/28 16:55:16.97 x3mLpGAH.net
>>808
ありがとう
>tractorが"Tracy Thomas" and "twistor"から来ているとは知らなかった。
wikipediaは、しばしば謝りを含む
いま、文献 [2] >>806 があるので、
検索で”Bailey, T. N.; Eastwood, M. G.; Gover, A. R., "Thomas's structure bundle for conformal, projective and related structures", Rocky Mountain J. 24 (1994), 1191?1217.”
とすると、PDFがダウンロードして読めるサイトで下記ヒット
URLリンク(projecteuclid.org)
このPDFのP2(原文P1192)を見ているけど
このページの中頃には、"twistor"より("twistor"には否定的記述あり)
"vector"と関係していて、”Tracey” Thomas のパイオニアをたたえる意味もある
のように書いてありますね
なので、”"twistor"から来ている”は、疑問かも
”The term tractor is a portmanteau of "Tracy Thomas" and "twistor"”とも書いていないし
また最初にだれが発案したのか?(この筆者たちなのか)、これだけでは読み取れなかったのですが
900:132人目の素数さん
23/03/28 17:44:17.86 sLyFrg3J.net
>>このページの中頃には、"twistor"より("twistor"には否定的記述あり)
>>"vector"と関係していて、”Tracey” Thomas のパイオニアをたたえる意味も>>ある
>>のように書いてありますね
確認しました。EastwoodとGoverがそう書いたのなら
その通り受け取っておきたい。
901:132人目の素数さん
23/03/28 20:39:55.34 YtCUqdhI.net
>>811
>確認しました。EastwoodとGoverがそう書いたのなら
>その通り受け取っておきたい。
・確認ありがとうございます
・>>808を見て、もしミスリードだとちょっと責任を感じるなと思ったのと
・>>806の”a portmanteau”という
902:言い回しが、数学者らしからぬ用語(下記)だなと引っかかったのです ・そこで、正確にはどういう記述なのかを確認してみようと思って、その確認をした結果を>>810を書きました ・EastwoodとGoverさんね、私は素人なのでお二人とも初見で全く存じ上げないが、上記の書きぶりを見るとかなり有名な人みたいですね・・ ・余談ですが、私は素人判断で tractorは、下記 attractor 関連か?と、勝手に想像していました。完全に外れでしたね (参考) https://news.mynavi.jp/article/20130930-a014/ 「かばん語(Portmanteau)」って?【知っているとちょっとカッコいい英語のコネタ】 2013/09/30 2つ、またはそれ以上の語の1部を組み合わせて作った語のことを「portmanteau(かばん語)」と言います。これは、ルイス・キャロルが「鏡の国のアリス」で、ハンプティ・ダンプティのせりふとして「slithyという言葉は、滑らか(lithe)で粘っこい(slimy)ことだ。 2つの意味が1つの言葉に詰め込まれたこの言葉は『旅行かばん(portmanteau)』のようだろう」と言ったのが始まりといわれているそう。 よく知られているものに、「brunch(ブランチ)」(「breakfast(朝食)」+「lunch(ランチ)」)や「Spanglish(スパングリッシュ)」(「Spanish(スペイン語)」+「English(英語)」)などがあります。 https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%88%E3%83%A9%E3%82%AF%E3%82%BF%E3%83%BC 力学系におけるアトラクター(英語: attractor)とは、時間発展する軌道を引き付ける性質を持った相空間上の領域である。力学系において重要なトピックの一つ。引き込まれた後の軌道は、アトラクター内に留まり続ける。
903:132人目の素数さん
23/03/28 22:02:48.56 hsF37p1R.net
Michael Eastwood FAA is a mathematician at the University of Adelaide, known for his work in twistor theory, conformal differential geometry and invariant differential operators. In 1976 he received a PhD at Princeton University in several complex variables under Robert C. Gunning. He was a member of the twistor research group of Roger Penrose at the University of Oxford and he coauthored the monograph The Penrose Transform: Its Interaction with Representation Theory with Robert Baston. After moving to South Australia in 1985 he was the 1992 recipient of the Australian Mathematical Society Medal and made a Fellow of the Australian Academy of Science in 2005. In 2012 he was named to the inaugural (2013) class of fellows of the American Mathematical Society.
Rod Gover
Nationality New Zealander
Known for Invariant theory problems, operator classification problem
Scientific career
Fields Mathematics, differential geometry, theoretical physics
Thesis A Geometrical Construction of Conformally Invariant Differential Operators (1989)
Doctoral advisor Michael Eastwood
Lane P. Hughston
904:132人目の素数さん
23/03/29 07:26:58.12 Tsf60pv8.net
>>813
ありがとう
お二人とも、その道の大家ってことですね
よく分かりました
905:132人目の素数さん
23/03/29 07:32:19.52 QLLxWkIM.net
どの道の大家も
今やブラックホールの数ほどいます
906:132人目の素数さん
23/03/29 08:00:04.98 WVOjyfQ8.net
>>815
どの道にも通じてない素人は
いつでも星の数ほどいるけど
907:132人目の素数さん
23/03/29 11:08:04.19 AuB1Yq7m.net
>>815-816
ありがとう
1)将棋に例えれば
・プロ棋士の数も増えた(「プロになる人の数>リタイアする人の数」 だから)
・藤井聡太ブームで、将棋ファンが増えた。駒の動かし方さえ知らない人。でも、それがプロの飯のタネ
・プロ棋士からど素人の間に、いろんな階層がある。それで良いんじゃないですか?
・数学で言えば、数学及び数学者が社会で活躍する場面が、増えているってことでもある
2)スポーツに例えれば
・野球、サッカー、バスケット、ゴルフなど各種あります(数学では古典的分類で、幾何、解析、代数)
・トーナメントプロとして、稼げる人は小数。米大リーグでも、メジャーや3Aなどだけど、レッスンプロとかもある
・数学でも、何とか賞のタイトルもちスターや、その道の大家がいて
数学及び数学者が社会で活躍する場面が、増えているってことでもある
3)歴史的に見れば
・ガウスのころ、プロ数学者で食える人は、ほんの一握り
ガウス自身も。数学者より天文台長を選んだし
アーベルが、就職に失敗して、無職のまま体を壊して亡くなったし
コーシーは、1805年にエコール・ポリテクニークに、ついで土木学校に入学、卒業し、土木技師としてナポレオンのもとでシェルブールに港を作る仕事に就いた
URLリンク(ja.wikipedia.org)
フーリエは、固体内での熱伝導に関する研究から熱伝導方程式(フーリエの方程式)を導き、これを解くためにフーリエ解析と呼ばれる理論を展開した
URLリンク(ja.wikipedia.org)
・時代が進んで、昔数学だった分野が、物理や工学や情報系に分化した
逆に、物理や工学から発した問題が、数学ネタとして探究される場面も増えている(例えば、Penroseの twistor>>813理論は、記憶では物理理論として提唱されたと思う」)
つづく
908:132人目の素数さん
23/03/29 11:09:08.91 AuB1Yq7m.net
>>817
つづき
4)要するに
・数学屋くずれほど、壁を作りたがる (「おれが挫折した数学が、おまいら素人にわかってたまるか!」と、怨念をたぎらせるw)
・しかし、現実の社会では、藤田宏氏>>753 のように、東大物理出身で日本数学会会長を務める人がでたり
日銀総裁植田氏や、三菱UFJの社長亀澤宏規氏のように、数学科出身で、数学者以外でご活躍の人がでたり
・だから、数学屋から変に壁を作らない方が良いと、私らは思いますけど
(そもそも「これが数学だ!」という定義が、時代とともに時々刻々変化しているのだしw)
以上
909:132人目の素数さん
23/03/29 11:29:11.86 AuB1Yq7m.net
>>767
>>>761 >そういえば、おらは線形代数講義は一回だけでたな。あとは、しらん
>>>764 >いちやずけで、教科書読んで余裕
>大学の講義に出席する必要がないというのはその通りです
>本を読んで理解できるならそれで結構でしょう
>それで線形代数を理解したと思うなら
>それは全くの誤りですが
>そんなことにも気づかずに人生終われるなら
>それはそれで幸せというものでしょう
戻るけど
>>761&>>764の彼が言っているのは
多分、ある事情で、線形代数は先取りで学んでいて
最初の一回で
910:、ガイダンスとか出欠は問わないとかの説明があり 当然講義内容は、「行列は初耳です」の人向け講義が延々続くだろうし ならば、試験前に教科書読んで知識を再確認して、練習問題をちょっとチェックして それで余裕だったと 私はそう解釈しました(なお、私は線形代数の講義は出ました。完全な先取りじゃなかったから) で、そんな授業だったら、線形代数とはなんぞやの数理哲学までいくはずないし それは、2年次以降の線形代数が使われる場面を経て、4年になればそれなりに自然に体得するものでしょ? そう思えば良いと思うよ 1年生の講義を聞いたからとて 線形代数とはなんぞやの数理哲学が分かるとは思えないな
911:132人目の素数さん
23/03/29 12:58:26.65 WCYXjPui.net
> …とはなんぞやの数理哲学
正常人には見えぬ文字聞こえぬ言葉が見聞きできる者がここにはおるようだな
912:132人目の素数さん
23/03/29 14:28:26.74 AuB1Yq7m.net
>>820
>> …とはなんぞやの数理哲学
>正常人には見えぬ文字聞こえぬ言葉が見聞きできる者がここにはおるようだな
そうなんかね?
線形代数をいま、簡単に行列と言い換えるよ
・大学1年の講義で会得した自分なりの数学における行列の姿と
・大学4年になって数学の各分野で使わる行列を知った後の姿と
(例えば、環としての行列や多元数の表現としての行列とか)
・大学・大学院を離れてもっといろんな数学の各分野で使わる行列を知った後の姿と
(数学以外の物理だ なんだかんだとか)
その人の立ち位置(あるいは レベルの高さ)で、行列の数学における役割の見え方が違うと思うよ
で、それら多方面の数学で使われる行列とはなんぞや?
それは、各人それぞれの回答があるんだろう
例えば、>>778の東大の学部で 線形代数のランクの定義を考えた人
いかに東大といえども、いろんな分野で使われる行列の全てを教えるわけでもないだろうし
その後に、いろんな分野で使われる行列を知って、「行列とは?」の認識を深めることもあるだろうと思うけど
913:132人目の素数さん
23/03/29 14:37:08.08 AuB1Yq7m.net
>>821 補足
自分がそうだったということは
付け加えておきたい
大学1年の線形代数の講義のあとと
その後、いろんな分野で行列ないし線形代数の使われる分野を知ったあととで
行列や線形代数に対する認識は異なっている(というかより深く理解していった)
914:132人目の素数さん
23/03/30 05:12:12.34 VT9zYSlG.net
>>821
> 数学の各分野で使わる行列を知った後の姿と
> (例えば、環としての行列や多元数の表現としての行列とか)
> もっといろんな数学の各分野で使わる行列を知った後の姿と
> (数学以外の物理だ なんだかんだとか)
> その人の立ち位置(あるいは レベルの高さ)で、
> 行列の数学における役割の見え方が違うと思うよ
> 方面の数学で使われる行列とはなんぞや?
> それは、各人それぞれの回答があるんだろう
聞かれてないことが聞こえる者がおるようだな
定義を尋ねているのに、
それ以外のことを答えようとするのは
定義を理解してないから
大学1年からやり直したほうがいい
> 例えば、・・・線形代数のランクの定義を考えた人
> いろんな分野で使われる行列の全てを教えるわけでもないだろうし
> その後に、いろんな分野で使われる行列を知って、
> 「行列とは?」の認識を深めることもあるだろうと思うけど
行列をどう使おうが自由だが
用法によって定義が変わるわけではない
ベクトル=横もしくは縦に並べた数?
行列=方形に並べた数?
それ、線型空間や線形写像の定義が理解できなかったということ
大学1年からやり直したほうがいい
915:132人目の素数さん
23/03/30 07:04:53.79 KnkRwx4e.net
>>823
行列の定義は、下記の歴史にあるように
時代とともに、変わってきた
学部の線形代数で、最初から無限次元を扱うわけでもないだろう
URLリンク(ja.wikipedia.org)
行列
歴史
916:132人目の素数さん
23/03/30 07:33:16.61 VT9zYSlG.net
>>824
> 最初から無限次元を扱うわけでもないだろう
幻聴が聞こえるなら精神科で見てもらったほうがいい
「無限次元」は幻聴
917:132人目の素数さん
23/03/30 07:34:11.83 VT9zYSlG.net
いってないことを書いたら負け
これがわからない○違いのなんと多いことか
918:132人目の素数さん
23/03/31 17:01:46.75 uacVvfqx.net
>>学部の線形代数で、最初から無限次元を扱うわけでもないだろう
そこで専門書を買ってハー
919:ン・バナッハの定理の証明を読んだら 線形代数の講義に出る気がしなくなり・・・・
920:132人目の素数さん
23/03/31 22:52:22.98 QF+9i7nw.net
>>827
>>>学部の線形代数で、最初から無限次元を扱うわけでもないだろう
>そこで専門書を買ってハーン・バナッハの定理の証明を読んだら
>線形代数の講義に出る気がしなくなり・・・・
ありがとう
へー
”ハーン・バナッハ”か、自分でこの定理を使ったことがないので
あまりよく分かっていませんが
思うに
”専門書を買ってハーン・バナッハの定理を勉強するうちに
学部初年度レベルの線形代数をマスターしてしまった”
ということですね
URLリンク(www.comp.tmu.ac.jp)
Kurata's Home Page
東京都立大学・大学院理学研究科・数理科学専攻・教授
URLリンク(www.comp.tmu.ac.jp)
解析学概論(1)(解析学特別講義I)の講義予定(倉田和浩 2019年4月)
URLリンク(www.comp.tmu.ac.jp)
解析学概論(1)(解析学特別講義I)
倉田 和浩
2019.6.24
・第10回講義ノート; ・第10回宿題; ・第10回宿題(解答例)
1 ハーン・バナッハの証明
1.1 ハーン・バナッハ空間(実線形空間)
URLリンク(ja.wikipedia.org)
ハーン?バナッハの定理(ハーン?バナッハのていり、英: Hahn?Banach theorem)は、関数解析学の分野における中心的な道具で、ベクトル空間の部分空間上で定義される有界線形汎関数が全空間へ拡張できることについて述べたものである。これにより、どのようなノルム線形空間においても、その上で定義される連続線形汎関数が、双対空間の研究を「面白い」ものにするに「十分」なほどたくさんあることがわかる。ハーン-バナッハの定理の別形態のものとして、ハーン?バナッハの分離定理あるいは分離超平面定理と呼ばれるものがあり、凸幾何学(英語版)の分野で多く用いられている。
定理の名前の由来は、1920年代後半にそれぞれ独立にこの定理を証明したハンス・ハーンとステファン・バナッハである。定理の特別な場合[1]については、より早い段階(1912年)でエードゥアルト・ヘリーによって証明されており[2]、またこの定理が導出されるようなある一般の拡張定理が、1923年にマルツェル・リースによって証明されていた[3]。
921:132人目の素数さん
23/04/01 06:33:50.40 EAl9sfTc.net
論文を書くのに不可欠な線形代数の知識は
「数理物理学の方法」の第一章で学んだ
922:132人目の素数さん
23/04/01 07:04:30.60 +md094lL.net
別に講義に出ようが出まいが
どんな本で学習しようが構わないが
ランクも行列式も知らず
正則行列というべきところを
正方行列といっちゃう落ちこぼれが
数学語る資格ないから
数学板に書き込むのをやめて
大学1年の線形代数やりなおせ
といいたいね
わかったか ηの1
923:132人目の素数さん
23/04/01 08:34:11.64 EAl9sfTc.net
>>830
>>ηの1
↑何の隠語?
924:132人目の素数さん
23/04/01 14:08:48.61 Jkc5ZjuZ.net
>>830
数学科で落ちこぼれて35年のおサルさんw >>スレリンク(math板:5番)
>>769より
>>765
(引用開始)
> 正則行列の関連で「零因子行列の話だろ? 知っているよ」と言ったとき
> 「関係ない話だ!」と絶叫していたね。
正則行列の条件なら、
「零因子行列であること」
はアウトですね
いかなる行列が零因子行列か述べる必要がありますから
おそらく、あなたにそういったのだと思いますが
(引用終り)
あんた、上記の自分の文章�
925:ヌみ返して おかしいと気づかないか? (まあ、零因子行列に無知なんだろう。というか、”零因子”わかる?w) 零因子行列の文献を念のために付けたのに (http://izumi-math.jp/K_Oguri/insi/insi.htm 行列における零因子の構造>>760) これ読んでないんだろうね(つーか、これを読まないといけないようじゃ、線形代数の何を大学数学科で勉強したのやら) (引用終り) おサルさんさ、下記のように 2012年度以降高校で、行列を教えなくなったという(下記。なお2022年度以降は復活するらしい) だから、そういう高校生読者への配慮で、あえて正方行列の逆行列と書いた おサルさんが、騒ぐから、すぐに正則行列に関連して「零因子行列の話だろ? 知っているよ」と言った(上記の通り) 「関係ない話だ!」と絶叫していたね いままた、 ”正則行列の条件なら、 「零因子行列であること」はアウトですね いかなる行列が零因子行列か述べる必要がありますから” だってww (零因子行列に無知なんだろう。というか、”零因子”わかる?w) つづく
926:132人目の素数さん
23/04/01 14:09:06.98 Jkc5ZjuZ.net
>>832
つづき
(参考)
URLリンク(toyokeizai.net)
東洋経済
消えた「数学C」が復活、奇妙すぎる日本の教育改革
脱「ゆとり」を提唱した数学者から見た教育行政
芳沢 光雄 : 桜美林大学リベラルアーツ学群教授
2022/08/27
1990年代の半ばから始まった数学I、数学II、数学III、数学A、数学B、数学Cという体系においては、建前としては数学I、数学II、数学IIIがコア科目、数学A、数学B、数学Cがオプション科目となっている。問題なのは、これら6科目の中身が約10年に一度の学習指導要領の改訂の度にクルクルと入れ替わることである。主な状況を参考までに示すと、以下のようになる。
2012年度以降:数学Aに「整数の性質」が新設、数学Aに(かつて中学数学に主にあった)「作図」と「空間図形」が加わる、数学Aにあった「二項定理」が数学IIに移動、数学Cにあった「確率分布」と「統計処理」が数学Bに移動、「複素数平面」が数学IIIに復活、数学Cは廃止となり、それに伴って「(主に2行2列の)行列」は廃止、等々。
2022年度以降:数学Cが復活、「複素数平面」が数学IIIから数学Cに移動、「整数の性質」が数学Aから新科目「数学と人間の活動」に移動、「ベクトル」が数学Bから数学Cに移動、等々。
(引用終り)
以上
927:132人目の素数さん
23/04/01 14:45:45.62 Jkc5ZjuZ.net
図書館に頼んでいた本が、来ました
「オイラーの主題による変奏曲」 古書で¥8,000か!
URLリンク(www.kosho.or.jp)
オイラーの主題による変奏曲 -二次形式、楕円曲線、ホップ写像
¥8,000
著者
小野孝
出版社
実教出版
刊行年
1980
2刷 カバー 「状態・可」
URLリンク(www.)アマゾン
オイラーの主題による変奏曲―二次形式,楕円曲線,ホップ写像 Tankobon Hardcover ? April 1, 1980
by 小野孝 (著)
Top review from Japan
Translate all reviews to English
雑学家
1.0 out of 5 stars 内容紹介のみ
Reviewed in Japan on May 21, 2009
第0章はピタゴラスの方程式の自然数解を求める五つの方法の紹介。ディオファントス方程式
第1章は二次形式、直交基底、ウイットの定理
第2章代数多様体、アファィン代数多様体、射影代数多様体
第3章平面代数曲線、アファィン平面曲線、重複度と局所環、射影平面曲線、ベズー&ネータの定理
第4章空間
928:楕円曲線、テータ関数 第5章二次球写像、ポップ写像 第6章フルウィツの問題、多元環、クリフォード環 付録でオイラーの「代数入門」の書かれたいきさつ 主に代数幾何の話題です。代数幾何入門としては「グレブナ基底と代数多様体入門〈上〉」が意外とやさしく書かれています。
929:132人目の素数さん
23/04/01 17:42:51.74 +md094lL.net
>>832
> 2012年度以降高校で、行列を教えなくなったという
> だから、そういう高校生読者への配慮で、
> あえて正方行列の逆行列と書いた
言い訳にもなんにもなってないけどな
「任意の正方行列に逆行列が存在すると誤解してましたぁ!」
といってジャンピング土下座すれば
笑って済ましてもらえるのにね
> 騒ぐから、すぐに正則行列に関連して
> 「零因子行列の話だろ? 知っているよ」
> と言った
「0以外の体の元は乗法逆元を持たない」のつもりで
「零因子以外の行列は乗法逆元を持たない」と書いて
ケアレスミスだと言い張りたいんだろうけど、ダメよ
計算馬鹿の工学屋にとって最も重要なのは
「正則行列(乗法逆元を持つ行列)を
判定するための具体的条件はなにか?」
君、それ、述べられなかったじゃん
工学屋としても完全な失格
工学部が数学で学ぶことなんてそれくらいしかないじゃん
それ学んでないって完全な落ちこぼれよ
行列の階段化も知らないって
全然工学屋として使えないじゃん
どうせ計算機で計算するから問題ない?
そういうことじゃないよ
だから1はηなんだよ
930:132人目の素数さん
23/04/01 17:55:59.23 +md094lL.net
ηの1の過失
・余因子による逆行列の公式だけ見て
任意の正方行列についてこの公式から
逆行列が求まると早とちりした
→公式から明らかなように、行列式が0なら逆行列は存在しない
・連立方程式の解法は
クラメールの公式のみ
だと思い込んでる
→クラメールの公式は行列式の商として書けるから都合がいいが
実際に解を求めるなら消去法のほうが早い
・行列式を求める方法は
置換とその符号による公式のみ
だと思い込んでる
→行列式の公式はあくまで定義
(しかも別にそれが唯一無二の定義というわけでもない)
別にその通りに計算しなければ求まらないわけではない
実際には行列を階段化する「消去法」でも求められる
・行列のランクの定義も知らず
したがってランクを求める方法も
全く知らない
→行列のランクは像の次元であって
これを求めるにも行列の階段化が有効
線形代数で落ちこぼれる人の多くは
定義と計算方法の違いが分かってない
定義とは計算方法のことだと思ってる
931:132人目の素数さん
23/04/01 18:02:29.89 +md094lL.net
行列の階段化なんていうのは、
もう筆算と同様の必須のスキル
こんなのできないってのは
割り算の計算ができないってのと同じ
それじゃいくら最先端の数学書読んでも無駄
932:132人目の素数さん
23/04/01 18:08:13.30 Jkc5ZjuZ.net
>>835(引用開始)
> 騒ぐから、すぐに正則行列に関連して
> 「零因子行列の話だろ? 知っているよ」
> と言った
「0以外の体の元は乗法逆元を持たない」のつもりで
「零因子以外の行列は乗法逆元を持たない」と書いて
ケアレスミスだと言い張りたいんだろうけど、ダメよ
(引用終り)
??????
おいおいおい
気は確か??
wwwwww
なお、ケアレスミスではない!
>>832に書いてある通り
2012年度以降高校で、行列を教えなくなったというから
大学での線形代数の教程もない「行列は初耳」さんを考慮して
意図して、正則行列と書かずに正方行列と書いたのです!w
まあ、上記のようなことを書いている人よ
あんたが、ヤクザのように無理矢理因縁つけているってこと、丸わかりじゃんwww
933:132人目の素数さん
23/04/01 18:14:34.24 +md094lL.net
>>838
ケアレスミス
正しくは以下
ーーーーーーーーーーーーーーーーーーーーー
「0は乗法逆元を持たない」のつもりで
「零因子は乗法逆元を持たない」と書いて
ケアレスミスだと言い張りたいんだろうけど、ダメよ
ーーーーーーーーーーーーーーーーーーーーー
> なお、ケアレスミスではない!
何熱くなってんだηの1
> 大学での線形代数の教程もない「行列は初耳」さんを考慮して
> 意図して、正則行列と書かずに正方行列と書いたのです!
だから全然言い訳になってないって
正則行列じゃない正方行列があるでしょ?
ない、といいはるなら、線形代数の教科書読み直して
で、正則行列か否かは具体的に判定できる条件があるでしょ?
できない、といいはるなら、線形代数の教科書読み直して
ヤクザ�
934:ヘ君でしょ さすが、1はナニワのηだな
935:132人目の素数さん
23/04/01 18:18:53.94 +md094lL.net
ηの1が、大学でいかなる線形代数の本を読んだのか知らんが
よほど酷い本でもない限り、私が指摘したことは書かれてる筈
したがって本のせいではない
1は耄碌してるから自分が読んだ線形代数の本の名前すら
全く思い出せないに違いない
936:132人目の素数さん
23/04/01 18:26:22.16 +md094lL.net
三角形の三辺の長さからその面積を求める
ヘロンの公式というものがあるが
n次元単体のn(n+1)/2個の辺の長さから
その体積を求める一般化されたヘロンの公式
(別名ケイリー・メンガー行列式)というものもある
線形代数がわかっていれば
どうやって導出するかもわかるだろう
URLリンク(mathlog.info)
まあηの1には逆立ちしても理解できないに違いないが
937:132人目の素数さん
23/04/01 18:31:51.57 +md094lL.net
ηの1はとにかく不勉強なくせに利口ぶりたがる正真正銘の変質者である
だからいうことがとにかくハッタリばかりで粗雑である
しかも工学屋のくせに計算スキルはほぼゼロである
こんな無能なヤツが卒業できてしまう日本の大学はザルである
(さすがに昭和時代のことだと思いたいが)
938:132人目の素数さん
23/04/01 18:48:09.02 Jkc5ZjuZ.net
>>834
>オイラーの主題による変奏曲―二次形式,楕円曲線,ホップ写像 Tankobon Hardcover ? April 1, 1980
>by 小野孝 (著)
なぜか、谷口 隆さんの「高校数学ではじめる整数論」『数学セミナー』連載を連想してしまった
雰囲気が似ているかも
(参考)(付録PDFには、リンクがありダウンロード可能)
URLリンク(www.nippyo.co.jp)
日本評論社
HOME 「高校数学ではじめる整数論」付録ページ
『数学セミナー』2019年4月号~2020年3月号にて連載中の「高校数学ではじめる整数論」(谷口 隆/著)の付録を、このページに毎月アップしていきます。付録はPDFの形式となります。
2019年4月号「素数のレース」 4月号詳細情報 付録PDF(3月12日up!)
2019年5月号「関とベルヌーイの数列」 5月号詳細情報 付録PDF(4月12日up!)
2019年6月号「あまりたちのなすサイクル」 6月号詳細情報 付録PDF(5月10日up!)
2019年7月号「素数は無数に」 7月号詳細情報 付録PDF(6月12日up!)
2019年8月号「ベルトランの仮説」 8月号詳細情報 付録PDF(7月12日up!)
2019年9月号「ラマヌジャンの論文集」 9月号詳細情報 付録PDF(8月13日up!)
2019年10月号「素因数分解の一意性」 10月号詳細情報 付録PDF(9月11日up!)
2019年11月号「ガウス整数環」 11月号詳細情報 付録PDF(10月11日up!)
2019年12月号「推測する」 12月号詳細情報 付録PDF(11月12日up!)
2020年1月号「ルジャンドル記号」 1月号詳細情報 付録PDF(12月12日up!)
2020年2月号「相互律鑑賞会」 2月号詳細情報 付録PDF(1月10日up!)
2020年3月号「オイラーの無限積」 3月号詳細情報 付録PDF(2月13日up!)
939:132人目の素数さん
23/04/01 19:02:23.20 Jkc5ZjuZ.net
>>839
(引用開始)
ケアレスミス
正しくは以下
ーーーーーーーーーーーーーーーーーーーーー
「0は乗法逆元を持たない」のつもりで
「零因子は乗法逆元を持たない」と書いて
ケアレスミスだと言い張りたいんだろうけど、ダメよ
ーーーーーーーーーーーーーーーーーーーーー
(引用終り)
いまごろ遅いわwwwww
あんた、何年か前に
”> 正則行列の関連で「零因子行列の話だろ? 知っているよ」と言ったとき
> 「関係ない話だ!」と絶叫していたね。”>>765
つまり
「関係ない話だ!」と絶叫していたときからずっと、本当に”零因子行列”に無知だったんだ
いくら数学科で落ちこぼれたとはいえ、信じられないことだな
だが、あんたは>>839を書くまでは、本当に”零因子行列”に無知だったんだぁ~!!www
鬼滅の刃、「鬼の首が獲れました!」www
URLリンク(ja.wikipedia.org)
鬼滅の刃
940:132人目の素数さん
23/04/01 20:40:47.25 Jkc5ZjuZ.net
>>839 追加補足
(引用開始)
>>838
ケアレスミス
正しくは以下
ーーーーーーーーーーーーーーーーーーーーー
「0は乗法逆元を持たない」のつもりで
「零因子は乗法逆元を持たない」と書いて
ケアレスミスだと言い張りたいんだろうけど、ダメよ
ーーーーーーーーーーーーーーーーーーーーー
> 大学での線形代数の教程もない「行列は初耳」さんを考慮して
> 意図して、正則行列と書かずに正方行列と書いたのです!
だから全然言い訳になってないって
正則行列じゃない正方行列があるでしょ?
ない、といいはるなら、線形代数の教科書読み直して
(引用終り)
数学科で落ちこぼれて35年のおサルさんw >>スレリンク(math板:5番)
こいつ、本当に
零因子行列知らないんだな!!wwwww
零因子行列の文献を、何度も念のために付けたのに
(例えば>>832など URLリンク(izumi-math.jp) 行列における零因子の構造>>760)
「正則行列じゃない正方行列があるでしょ?」
だってぇ~www
笑えるぞ~!!wwwww
941:132人目の素数さん
23/04/01 21:25:10.41 +md094lL.net
>>845
数学板の零因子 ηの1
942:132人目の素数さん
23/04/01 21:29:50.48 +md094lL.net
>>845
> 「正則行列じゃない正方行列があるでしょ?」
> 笑えるぞ!!
ηの1は
正方行列=正則行列
とおもいこんでるらしい
こりゃ数学は全然無理だわ
943:132人目の素数さん
23/04/01 22:08:05.94 Jkc5ZjuZ.net
>>781
>ランクの定義をきかれて即答したが
>帰り道でふと自信がなくなり
>確認している途中に
>ものすごく重要なポイントだということに気づいた。
>>934
「オイラーの主題による変奏曲 -二次形式、楕円曲線、ホップ写像」(小野孝)
このP18 第1章 二次形式 §直交性 4.1 階数、直交基底で
”Sは行列だから階数(rank)をもつ”
”線形代数で知られているように部分空間 略 の次元はn-rとなる”
云々
なるほど、小野孝にも同じことが記されているね
944:132人目の素数さん
23/04/01 22:09:53.65 Jkc5ZjuZ.net
>>847
おっさん、>>845で指摘していることが分からないんだね
こいつ、本当に
零因子行列知らないんだな!!wwwww
945:132人目の素数さん
23/04/01 22:17:42.83 EAl9sfTc.net
>>849
>>こいつ、本当に
>>零因子行列知らないんだな!!
零因子も行列もよく使われるが
零因子行列という言い方はあまり使われないのではなかろうか
非可逆正方行列ならどこかで見たような気がする
946:132人目の素数さん
23/04/01 22:25:25.56 EAl9sfTc.net
余因子行列ならよく見る
947:132人目の素数さん
23/04/02 07:16:03.04 MWc2ll13.net
>>850
> 零因子行列という言い方はあまり使われないのではなかろうか
確かに非正則行列は零因子であるし、逆も真だが
非正則の条件として答えることはないな
体の元を成分にもつ n 次正方行列 A に対して次は同値である。
1. A は正則行列である(AB=E=BAを満たす n 次正方行列 B が存在する)
1R. AB = E となる n 次正方行列 B が存在する
1L. BA = E となる n 次正方行列 B が存在する
2. A の階数は n である
3L. A は左基本変形のみによって単位行列に変形できる
3R. A は右基本変形のみによって単位行列に変形できる
4. 一次方程式 Ax = 0 は自明な解しかもたない
5. A の行列式は 0 ではない
6C. A の列ベクトルの族は線型独立である
6R A の行ベクトルの族は線型独立である
7. A の固有値は、どれも 0 でない
ついでにいうと、行列の階数として以下の1を定義としたとき、2以降のいずれも1と同値
1. A に基本変形を施して階段行列 B を得たときの B の零ベクトルでない行(または列)の個数(階段の段数とも表現される)
2. 表現行列 A の線型写像の像空間の次元。
3C. A の列ベクトルの線型独立なものの最大個数(A の列空間の次元)
3R. A の行ベクトルの線型独立なものの最大個数(A の行空間の次元)
4. A の 0 でないような小行列式の最大サイズ
948:132人目の素数さん
23/04/02 07:21:22.36 MWc2ll13.net
>>851
任意の正方行列に対して余因子行列は存在する
949:132人目の素数さん
23/04/02 07:28:58.01 MWc2ll13.net
「Aが零因子でない」ではなく
「Aとその余因子行列との積が零行列でない」なら
ちょっとは面白いか
950:132人目の素数さん
23/04/02 07:40:26.42 e7OuYDly.net
>>828
手を動かさないと解析は無理
951:132人目の素数さん
23/04/02 08:18:19.72 CtFh/chl.net
>>855
>手を動かさないと解析は無理
ありがとう
これから、ハーン・バナッハの定理を勉強する若者のために
>>852
>> 零因子行列という言い方はあまり使われないのではなかろうか
> 確かに非正則行列は零因子であるし、逆も真だが
> 非正則の条件として答えることはないな
なるほど
しかし、”零因子行列→零因子の行列”とでも言えば、良かったかも
だが、線形代数で零因子を知っていれば、”零因子行列→零因子の行列”以外に解釈のしようもないでしょう
(参考)
URLリンク(yoshiiz.blog.fc2.com)
よしいずの雑記帳 2010-08-05
体上の正方行列が零因子になる条件
体(例:実数体、複素数体)上の正方行列が零因子になる条件は、基本的な結果であり、それを導くのも難しくないのですが、線型代数や代数学の入門書には意外と書かれていません。
まず、体上の正方行列は、零因子か正則行列のどちらかです。しかも、�
952:齦福フみ成り立ちます。つまり、正則行列かつ零因子であるようなものは存在しません。 よく知られているように、正則行列であるための必要十分条件は、行列式が0でないことです。後者はさらに、0が固有値でないことと同値です。この対偶を考えれば、体上の正方行列について、以下の条件がすべて同値であることがわかります。 ・零因子である ・行列式が0になる ・0が固有値の一つである 一般に、零因子には左零因子と右零因子があります。ところが、体上の行列においては、左零因子であることと右零因子であることは同値になります。しかも、Aが零因子のとき、あるOでない正方行列Xが存在してAX=XA=Oとなります(ヒント:行列Aの最小多項式を考える)。ただし、AX=Oを満たす全てのXが必ずしもXA=Oを満たすとは限りません。その逆も同様です。 (引用終り) 以上
953:132人目の素数さん
23/04/02 08:29:25.11 e7OuYDly.net
>>856
コピペばかりしても、ハーン・バナッハの定理以前に実解析で脱落するので、解析は身に付かない
954:132人目の素数さん
23/04/02 08:34:36.11 e7OuYDly.net
>>856
実解析を知らない人間に、フーリエ変換の総和核とか説明しても分かりっこないとつくづく感じた
955:132人目の素数さん
23/04/02 08:41:29.70 CtFh/chl.net
>>852 補足追加
(引用開始)
体の元を成分にもつ n 次正方行列 A に対して次は同値である。
1. A は正則行列である(AB=E=BAを満たす n 次正方行列 B が存在する)
4. 一次方程式 Ax = 0 は自明な解しかもたない
5. A の行列式は 0 ではない
(引用終り)
そうですね
そして
”一次方程式 Ax = 0 は自明な解しかもたない”
の否定
”一次方程式 Ax = 0 が非自明な解xを持つ”
が、
Aが零因子であることの定義ですね
956:132人目の素数さん
23/04/02 08:50:20.24 CtFh/chl.net
>>858
>実解析を知らない人間に、フーリエ変換の総和核とか説明しても分かりっこないとつくづく感じた
いま2023年、広大は現代数学の分野で、全てを万遍なく知る人は少ないし
ある分野ではその道の大家で、他の分野は疎いといいう人が居ても良いだろうと思うけど
957:132人目の素数さん
23/04/02 08:51:15.08 CtFh/chl.net
>>860 タイポ訂正
いま2023年、広大は現代数学の分野で、全てを万遍なく知る人は少ないし
↓
いま2023年、広大な現代数学の分野で、全てを万遍なく知る人は少ないし
958:132人目の素数さん
23/04/02 09:00:30.81 e7OuYDly.net
>>860
本当に呆れたのは、その人間がルベーグ積分を知らずに
大学の数学科の確率論を身に付けようとしていたことだよ
ルベーグ積分を知らずに大学の数学科の確率論を身に付けることはどう考えても無謀な計画で、
そいつにフーリエ変換の総和核を説明してもムダだし分かりっこないよ
959:132人目の素数さん
23/04/02 09:16:52.88 CtFh/chl.net
>>829
>論文を書くのに不可欠な線形代数の知識は
>「数理物理学の方法」の第一章で学んだ
ありがとう
”R・クーラント、D・ヒルベルト 『数理物理学の方法』”だね
Z世代のために
URLリンク(ja.wikipedia.org)
リヒャルト・クーラント(Richard Courant, 1888年1月8日 - 1972年1月27日)は、ドイツおよびアメリカ合衆国の数学者。
ゲッティンゲンに移った。そこでダフィット・ヒルベルトの助手になり、1910年に博士号を取得した。
彼の書いた教科書Methods of mathematical physics(邦題:『数理物理学の方法』)は80年以上後もいまだに使われている。
クーラントの名は元々技師によって発明された有限要素法でも知られており、彼はそれを確固たる数学の手法へ置いて様々な問題へ応用した。この方法は今、偏微分方程式を数量的に解く最重要な方法となっている。
R・クーラント、D・ヒルベルト 『数理物理学の方法』 上、藤田宏・高見頴郎・石村直之訳、丸善出版〈シュプリンガー数学クラシックス 第26巻〉、2013年1月。ISBN 978-4-621-06525-9。 - 原タイトル:Methoden der mathematischen Physik 原著第4版の翻訳。
960:132人目の素数さん
23/04/02 09:19:52.57 CtFh/chl.net
>>862
>大学の数学科の確率論を身に付けようとしていたことだよ
おれも本当に呆れたのは
大学の数学科の確率論が分かっていない落ちこぼれがいて
時枝記事の不成立が理解できないアホだってことよw スレリンク(math板)
961:132人目の素数さん
23/04/02 09:24:03.47 HQk+NHfT.net
「手を動かす」とか言ってるところが、いかにも「おっちゃん」とか
いう池沼くさい。無駄な計算でも何でも、ともかく手を動かす
ことでやった気になってるバカですから。
実際には頭が正しく動いていることが一番大事。
962:132人目の素数さん
23/04/02 09:27:05.66 HQk+NHfT.net
セタボンとおっちゃんは同じ穴の狢なのだから
お互い仲良くした方がいいと思う。
963:132人目の素数さん
23/04/02 09:27:09.55 e7OuYDly.net
>>864
時枝記事に大学の確率論は必要ないし、時枝記事は同値類や選択公理の問題