ガロア第一論文と乗数イデアル他関連資料スレ2at MATH
ガロア第一論文と乗数イデアル他関連資料スレ2 - 暇つぶし2ch711:132人目の素数さん
23/03/21 17:44:02.21 8s9PZXQ2.net
>>643
つづき
The gluing is along the Zariski topology; one can glue within the category of locally ringed spaces, but also, using the Yoneda embedding, within the more abstract category of presheaves of sets over the category of affine schemes.
URLリンク(ja.wikipedia.org)
可換環論(英語:commutative algebra、commutative ring theory)は、その乗法が可換であるような環(これを可換環という)に関する理論の体系のこと、およびその研究を行う数学の一分野のことである。
URLリンク(en.wikipedia.org)
Associative algebra
This article is about a particular kind of algebra over a commutative ring. For other uses of the term "algebra", see Algebra (disambiguation).
In mathematics, an associative algebra A is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.
URLリンク(ja.wikipedia.org)
結合多元環
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch