ガロア第一論文と乗数イデアル他関連資料スレ2at MATH
ガロア第一論文と乗数イデアル他関連資料スレ2 - 暇つぶし2ch684:132人目の素数さん
23/03/21 10:15:13.30 8s9PZXQ2.net
>>621
乗数イデアルの表面をなめただけだが
要するに、特異点を含む場合を、乗数イデアルを使うと処理できるってことかな
そう読めた
複素解析→代数幾何へという流れね
URLリンク(gakui.dl.itc.u-tokyo.ac.jp)
乗数イデアルの局所的性質の研究 高木俊輔 2004
URLリンク(gakui.dl.itc.u-tokyo.ac.jp)
学位論文要旨
乗数イデアルの局所的性質の研究 高木俊輔 2004
乗数イデアルは最初 Demailly, Nadel, Siu 等の仕事において,複素解析的文脈で登場した.彼らは線束上の特異計量に付随する乗数イデアルの概念を導入し,乗数イデアルを巻き込んだ形の小平型消滅定理を証明した.その後すぐに乗数イデアルは,特異点解消と食い違い因子を用いて,純代数幾何的に再定式化された.原理的には解析的な乗数イデアルの方がより一般的な概念だが,実際にはこれまでに得られた応用のほとんどは本質的に代数幾何的なものであり,代数的な言葉に翻訳できる.さらに代数的な乗数イデアルはそれ自体で様々な応用を生み出し始めた(cf. [2], [1], [3], [8], [9]). 今やこのイデアルは双有理幾何学において重要な道具となりつつあるように思われる.本論文では,乗数イデアルの局所的性質に関する次の4つの内容を扱う.
いつ乗数イデアルの劣加法性は成立するか?
乗数イデアルの劣加法性とは,イデアルの積の乗数イデアルが,各々の乗数イデアルの積に含まれるという性質である.Demailly-Ein-Lazarsfeld [1] は,複素数体C上定義された非特異代数多様体上でこの劣加法性が成り立つことを証明した.彼らの結果は,可換環論及び代数幾何学に優れた応用を持つ.例えば,正則局所環のイデアルの形式冪の増大度に関する問題[3]や,巨大な因子の体積は爆発の上の豊富な因子の自己交点数によって近似できるという藤田の近似定理[5]などがある.しかしながら彼らの証明は,川又-Viehweg の消滅定理と対角線埋め込みが完全



次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch