23/03/18 15:30:23.86 0AgVS/Gm.net
>>483
> Kowalskyは
> 局所コンパクトかつ離散的でない位相体が
> 同型になり得る位相体の構造を
> 初等的な手法で浮き彫りにした人物で、
「・・・が同型になり得る位相体」とはおかしな文章だ
「局所コンパクトかつ離散的でない位相体の構造」
ではなぜいかんのか?
それはさておき、上記の通りなら
それは>>330のQ2ではない
なぜならこう書かれているから
Q2.実数体R上の有限次元線型空間である斜体はR,Cと四元数体Hのみであることを示せ
どこにも
「局所コンパクトかつ離散的でない位相体」
なんて書かれていない
「実数体R上の有限次元線型空間である斜体」
と書かれている
> Kowalskyが示した結果の証明には11、12ページを要する
> Kowalskyの結果とフロベニウスの定理により、
> 任意の局所コンパクトな位相体は
> 実数体か複素数体か四元数体のどれか1つに同型であること
> が示された
フロベニウスの定理は以下の通りだが?
URLリンク(ja.wikipedia.org)(%E4%BB%A3%E6%95%B0%E5%AD%A6)
「D が実数体 R 上の有限次元多元体であれば、以下の何れかが成り立つ。
D = R
D = C(複素数体)
D = H(四元数体)」
330のQ2の通りだろう
当然だ これを見て出題したのだから
つまり、誤解したのは、QmDuSyxi こと乙 君だ
>>484
Kowalskyのいうのは
「局所コンパクトかつ離散的でない位相体は
実数体かその上の有限次元多元体である」
ということだろう
330ではそんなことは尋ねていない
君はそんな初歩的なことが読み取れない
数学以前に国語ができていない
それでは数学は全く理解できない