ガロア第一論文と乗数イデアル他関連資料スレ2at MATH
ガロア第一論文と乗数イデアル他関連資料スレ2 - 暇つぶし2ch356:132人目の素数さん
23/03/13 21:10:58.75 UeELXD7y.net
>>355
つづき

R を実数体とし、C を複素数体とし、H を四元数体とする。
R 上のすべての有限次元単純代数は R, C, あるいは H 上の行列環でなければならない。R 上のすべての中心的単純代数は R あるいは H 上の行列環でなければならない。これらの結果はフロベニウスの定理から従う。
C 上のすべての有限次元単純代数は C 上の行列環でなければならない。したがって C 上のすべての中心的単純代数は C 上の行列環でなければならない。
有限体上のすべての有限次元中心的単純代数はその体上の行列環でなければならない。
すべての可換半単純環は体の有限個の直積でなければならない[注釈 3]。
アルティン・ウェダーバーンの定理によると体 k 上の半単純代数は有限積
\prod M_{{n_{i}}}(D_{i}) に同型である、ただし
n_{i} は自然数で
D_{i} は
k 上の有限次元可除代数で、
M_{{n_{i}}}(D_{i}) は
D_{i} 上の
n_{i}\times n_{i} 行列の代数である。再び、この積は因子の置換を除いて一意的である。
URLリンク(ja.wikipedia.org)(%E4%BB%A3%E6%95%B0%E5%AD%A6)
フロベニウスの定理(ふろべにうすのていり、英: the Frobenius theorem)とは、実数体上の有限次元の結合的多元体を特徴付ける定理であって、ドイツの数学者フェルディナント・ゲオルク・フロベニウスによって1877年に証明された。この定理は、可換でない実数上の結合的多元体は四元数体しかないことを証明している。
内容
D が実数体 R 上の有限次元多元体であれば、以下の何れかが成り立つ。
D = R
D = C(複素数体)
D = H(四元数体)
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch