23/03/10 09:07:19.98 mCwkYGqk.net
負け犬は言い訳しかできない
だから数学に負けたと気づけ
229:132人目の素数さん
23/03/10 09:08:24.01 WDvXIOZ/.net
>>208
現在では、スレの常連の”おっちゃん”ではなく、スレの常連だった”おっちゃん”になるだろ
230:132人目の素数さん
23/03/10 09:11:47.58 mCwkYGqk.net
>>211
何が言いたいのかわからんが
乙が愚かなままのは事実
もう多変数関数論とか諦めろ
大学1年の微積分の単位もとれずに負けた
貴様に分かるわけなかろうが
231:132人目の素数さん
23/03/10 09:18:56.11 WDvXIOZ/.net
>>212
>何が言いたいのかわからん
スレ主の>>188での書き方のことだよ
>大学1年の微積分の単位もとれずに負けた
卒業はしたから単位は取っている
何いい出してんだか…
232:132人目の素数さん
23/03/10 09:24:19.32 14LHUOWE.net
こういうのがいわゆるレスバ
233:132人目の素数さん
23/03/10 09:26:29.11 mCwkYGqk.net
>>213
あんなんで単位取れるとかザルだな
>>214
数学分からんのに分かったとウソつく奴は駆逐すべし😏
234:132人目の素数さん
23/03/10 09:29:44.09 WDvXIOZ/.net
>>215
あっそう
ゼミはためになったけどな
235:132人目の素数さん
23/03/10 09:30:28.07 mCwkYGqk.net
数学分からんのが
236:アカンとは誰も言ってない 分からんのに分かったようなウソつくのがアカンと言ってる なんでそんなウソつく必要がある 分からんなら分からんから教えてと言えばいい 人にアタマ下げるのが嫌だ? あんた何様のつもりなの? いくらアタマ下げたって死にゃしねぇよ
237:132人目の素数さん
23/03/10 09:32:25.39 mCwkYGqk.net
>>216
>ゼミはためになったけどな
でも論理は全然身についてないけどな
全く自覚ないの?自惚れにも程があるね
238:132人目の素数さん
23/03/10 09:33:01.76 WDvXIOZ/.net
>>217
自学自習
239:132人目の素数さん
23/03/10 09:33:52.80 mCwkYGqk.net
>>219
できてないよ 負け犬
240:132人目の素数さん
23/03/10 09:35:09.74 mCwkYGqk.net
勝ちたがる奴程負ける
要するに人として間違ってるんだな
241:132人目の素数さん
23/03/10 09:37:38.35 WDvXIOZ/.net
>>218
論理とかよりむしろ、ジョルダンの曲線定理の証明にはデデキント切断の考え方が必要とか議論出来てよかったよ
242:132人目の素数さん
23/03/10 09:39:48.46 WDvXIOZ/.net
>>220
ま、数年前まで背理法の考え方は分からなかったけどな
243:132人目の素数さん
23/03/10 09:48:18.44 mCwkYGqk.net
>>222
>●●定理の証明には○○の考え方が必要とか
>議論出来てよかったよ
でも理解はしてない、と
指導教授、誰?
なんかその人に同情するわ
>>223
数年前?いまだにわかってないだろ
244:132人目の素数さん
23/03/10 09:49:51.37 mCwkYGqk.net
そもそも背理法の何がどう理解できないのかちっとも分からん
245:132人目の素数さん
23/03/10 09:53:52.72 mCwkYGqk.net
乙はそもそも∀と∃の違いも分からんくらいだから
数学書を読んでも書いてあることが理解できるレベルに達してない
246:132人目の素数さん
23/03/10 09:55:05.06 WDvXIOZ/.net
>>224
>でも理解はしてない
位相幾何学は大変だから
>数年前?いまだにわかってないだろ
いや、背理法の使い方は分かった
何で一々レスバしないといけないんだ?
247:132人目の素数さん
23/03/10 09:57:47.67 WDvXIOZ/.net
>>226
>乙はそもそも∀と∃の違いも分からんくらい
∀は任意の、∃は或る
248:132人目の素数さん
23/03/10 10:03:53.21 mCwkYGqk.net
>>227
>位相幾何学は大変だから
それを言うなら一般位相
乙がレスやめれば終わり
負け犬が何書いたって勝てねえよ
貴様の存在そのものが誤り
249:132人目の素数さん
23/03/10 10:05:51.24 mCwkYGqk.net
>>228
でも数学書の証明では読み違える
それを世間では分かってないと言う
250:132人目の素数さん
23/03/10 10:11:38.89 WDvXIOZ/.net
>>229-230
>でも数学書の証明では読み違える
何の関係があるのか知らないが面倒臭い人間だな
どちらかというと証明を読むというより、証明を出来るだけ考えるというスタンスだから
251:132人目の素数さん
23/03/10 10:18:28.70 mCwkYGqk.net
>>231
下手な考え 休むに似たり
面倒臭いのは君
負け犬がウソで勝ちたがるな
252:132人目の素数さん
23/03/10 10:21:40.25 mCwkYGqk.net
乙は愚かなくせに利口ぶる
要するに自分が分かってない
誰でも最初は愚か
それを自覚するのがスタート
乙はいまだにスタートできてない
これ、1も同じだけどな
253:132人目の素数さん
23/03/10 10:23:05.32 WDvXIOZ/.net
>>233
出来るだけ証明考える習慣を付ければ考える力は身に付くし、演習にもなる
負け犬とかいい出して絡んで来て、本当に面倒臭い人間だ
254:132人目の素数さん
23/03/10 10:24:24.58 mCwkYGqk.net
自分は1や乙が愚かだという点では否定しない
愚かだと認めずウソついて利口ぶるから否定してる
255:132人目の素数さん
23/03/10 10:26:45.44 mCwkYGqk.net
>>234
言い訳するな
単に他人の言ってることが理解できない
屈辱に耐えられないで逃げてるだけだろ
そもそもそんなことを屈辱と思うこと自体狂ってるが
256:132人目の素数さん
23/03/10 10:27:07.95 WDvXIOZ/.net
>>235
愚かで結構
257:132人目の素数さん
23/03/10 10:29:24.28 mCwkYGqk.net
>>237
だろ?
だったら素直に他人の証明を読むことだ
常に他人と勝負するのは愚か者
258:132人目の素数さん
23/03/10 10:30:23.90 WDvXIOZ/.net
>>236
>(愚かでも)出来るだけ証明考える習慣を付ければ考える力は身に付くし、演習にもなる
は事実だけどな
259:132人目の素数さん
23/03/10 10:32:05.90 mCwkYGqk.net
実はこれはレスバトルではない
私は乙と勝負して勝とうとしてるわけではない
寧ろ勝負なんて馬鹿げたことだと言っている
なぜこのことが理解できないのか分からん
260:132人目の素数さん
23/03/10 10:33:36.42 mCwkYGqk.net
>>239
でも実際には何も身についてない
なぜそれを認めない?
261:132人目の素数さん
23/03/10 10:34:27.62 WDvXIOZ/.net
>>238
或る期間考えてムリだったらそうしてる
それぞれの人にはその人なりの学習法があるから、
他人に自分の学習法を押し付けるのはおかしいとは思うね
262:132人目の素数さん
23/03/10 10:34:35.97 mCwkYGqk.net
他人の言葉が理解できない者が賢くなることはない
263:132人目の素数さん
23/03/10 10:37:26.38 mCwkYGqk.net
>>242
或る期間とはどの程度?
一ヶ月も費やすのは無駄
自分なら三分しか費やさない
おかしいのは自惚れ屋の乙
264:132人目の素数さん
23/03/10 10:38:37.39 WDvXIOZ/.net
>>241
分野によっては、研究法は身に付く可能性がある
265:132人目の素数さん
23/03/10 10:41:12.43 WDvXIOZ/.net
>>244
3分で諦めるのか
私はせめて2週間位は考えてみるけどな
266:132人目の素数さん
23/03/10 10:42:00.65 mCwkYGqk.net
乙が自分は賢いと思うのがそもそも病んでいる
自分なら同じ状況なら自分は何も分かってないと認める
そうしたところで何の問題もない
死ぬわけでもない 笑うやつは笑わせとけ
自分をしっかり保てばそんなことは痛くも痒くもない
267:132人目の素数さん
23/03/10 10:42:51.32 mCwkYGqk.net
>>245
自惚れるな
268:132人目の素数さん
23/03/10 10:44:08.06 mCwkYGqk.net
>>246
そんな無駄な時間は掛けない
馬鹿は時間の配分から間違ってる
269:132人目の素数さん
23/03/10 10:44:20.62 WDvXIOZ/.net
>>247
そもそも、考える力を身に付けないと意味ない
270:132人目の素数さん
23/03/10 10:45:55.76 mCwkYGqk.net
>>249
本の演習問題は三分で答えが思いつかないなら
何分考えても無駄
271:132人目の素数さん
23/03/10 10:46:56.49 WDvXIOZ/.net
>>248
演習問題に何とかの定理とかが載っていることあるでしょ
基本的には、それと同じ話だよ
272:132人目の素数さん
23/03/10 10:48:56.44 mCwkYGqk.net
>>250
考える力とは何か?
そもそもすでにわかってしまったことを
自力で全部再構成しようなんて愚の骨頂
さっさと先人のアイデアを理解したほうが得
だから言ってるだろう 無闇に勝負するなと
273:132人目の素数さん
23/03/10 10:50:03.71 mCwkYGqk.net
>>252
だからそんなもんで2週間粘るのは無駄
274:132人目の素数さん
23/03/10 10:54:10.97 WDvXIOZ/.net
>>253
誰だか知らないが、私には私なりの学習法がある
私は院生でも大学の教員でもないし、ここでレスバしても何の意味ない
275:132人目の素数さん
23/03/10 10:57:54.55 WDvXIOZ/.net
>>253
その考え方だと、誤植の訂正とかしながら読み進められるか分からないとは思う
276:132人目の素数さん
23/03/10 10:59:32.19 mCwkYGqk.net
>>255
レスバトルではない わかってないな
君の学習法が成功したかね?
失敗しただろ?
失敗を認めない限り成功はないよ
277:132人目の素数さん
23/03/10 11:01:08.34 mCwkYGqk.net
>>256
言い訳しなくていい
君が無闇にタニンに勝ちたがる病を克服すればいい
278:132人目の素数さん
23/03/10 11:03:42.29 WDvXIOZ/.net
>>257
生涯学習で、学習法が成功するかどうかは死ぬまで分からない
279:132人目の素数さん
23/03/10 11:04:59.94 mCwkYGqk.net
愚か者に限って自分の力を過信し誇示したがる
そして身を滅ぼす
生き延びたかったら自分を知ることだ
280:132人目の素数さん
23/03/10 11:05:45.08 WDvXIOZ/.net
>>258
当事者にとっては本当にそうなるとは思う
281:132人目の素数さん
23/03/10 11:05:51.64 mCwkYGqk.net
>>259
言い訳は失敗の元
282:132人目の素数さん
23/03/10 11:06:39.69 mCwkYGqk.net
>>261
君が当事者だよ
283:132人目の素数さん
23/03/10 11:09:36.52 WDvXIOZ/.net
>>310
今日久し振りに書いたのに何故面倒臭いレスバしないといけないんだ?
一々ジャマしないでくれ
284:132人目の素数さん
23/03/10 11:12:05.98 WDvXIOZ/.net
>>262-263
>>264は>>310へのレスではない
レス番号間違えた
285:132人目の素数さん
23/03/10 11:12:58.76 mCwkYGqk.net
>>264
レスバトルではない
君に反論は求めてない
ただ君が多変数関数論を理解しきった体で
書き散らかすのは不健全だからやめとけと
いつてるまで 反論の余地0
286:132人目の素数さん
23/03/10 11:15:56.02 WDvXIOZ/.net
>>266
そもそも、多変数関数論は余り興味ない
287:132人目の素数さん
23/03/10 11:21:47.58 ghglJniN.net
>>266
こらこら、おサル スレリンク(math板:5番)
数学科で落ちこぼれて35年のおサルが、大きな顔するな、アホw
自分より下を探すゲスやろう
おっちゃん相手に、良い恰好するな! あほ
すっこんでろ!
288:132人目の素数さん
23/03/10 11:29:37.38 YXTEQX3G.net
>>266
>>ただ君が多変数関数論を理解しきった体で
>>書き散らかすのは不健全だからやめとけと
>>いつてるまで
↓もしかしてこのレスのこと?
1) φを多重劣調和関数としたとき
|f|^2e^{-φ}が可積分であるような解析函数芽fの集合は
連接イデアル層になる(Nadelの定理)
これをφの乗数イデアル層といいI(φ)で表す。
Fano多様体上のK"ahler-Einstein計量の存在問題に現れる
Monge-Amp`ere方程式の解析において
I(φ)を係数とするコホモロジー群の消滅が決定的に重要な
役割を果たした。
2)小平消滅定理をアンプル(豊富)束係数のコホモロジー消滅と見ると
代数的証明が可能である(Deligne-Illusie)ので、乗数イデアル層も
同様な代数化が期待できる。I(φ)=I(pφ)を満たすpの上限は>1であろう
というのがDemaillyのSOC(strong openness conjecture)であったが
JohnssonとMustataはこれを代数的な定式化により二次元で解いた。
Valuations and asymptotic invariants for sequences
of ideals Ann. Inst. Fourier (2012)
そのあと一般次元でGuanとZhouが解析的方法で解いた。
A proof of Demailly's strong openness conjecture
Ann. of Math. (2015)
XuはJ-M方式を完遂した。
Xu : A minimizing valuation is quasi-monomial, Ann. of Math. (2020)
3) 乗数イデアル層は整閉な連接イデアル層だが逆は正しくないので、
乗数イデアル層の代数的な特徴づけは非常に興味ある課題である。
289:132人目の素数さん
23/03/10 11:56:54.97 mCwkYGqk.net
>>267
さよか ならけっこう
>>269
乙がこんな文章書けるなら褒めてあげるよ
290:132人目の素数さん
23/03/10 11:59:00.52 mCwkYGqk.net
>>268
>大きな顔するな、アホ
>自分より下を探すゲスやろう
>良い恰好するな! あほ
>すっこんでろ!
その言葉、全部1にお返し致す
291:132人目の素数さん
23/03/10 12:01:28.17 ghglJniN.net
>>202
>磁場項を含むシュレディンガー方程式は
>複素モンジュ・アンペール方程式の解析に
>新しい道を開きました。
ありがとう
和文検索では、ジャストの文献ヒットしないけど
取りあえずヒットしたメモをば貼ります
URLリンク(www.ms.u-tokyo.ac.jp)
談話会・数理科学講演会
過去の記録
2019年06月28日(金)
15:30-16:30 数理科学研究科棟(駒場) 056号室
木田良才 氏 (東京大学数理科学研究科)
軌道同値関係への誘い
[ 講演概要 ]
測度空間への群作用に対し,作用の軌道を同値類とする同値関係が得られる.このような軌道同値関係の研究は,古くはフォンノイマン環の研究に動機付けられ,そのため,従順性を対象とするものが多かった.現在では,非従順な対象の研究も盛んである.例えば,非従順性と自由部分群の存在の関係を問うフォンノイマンの問題が,軌道同値関係の枠組みでは(群の場合と違って)肯定的に解決され,驚くべきことに,そのアイデアはパーコレーションの理論に基づいている(Gaboriau-Lyons).講演では,これらを概観した後,講演者が近年取り組んでいる内部従順性にまつわる研究を紹介したい.
2018年03月10日(土)
13:00-14:00 数理科学研究科棟(駒場) 大講義室号室
二木昭人 氏 (東大数理)
K安定性と幾何学的非線形問題 (JAPANESE)
[ 講演概要 ]
K安定性は代数幾何における幾何学的不変式論(GIT)の安定性として定式化されたものであるが,アイデアの端緒は Kazdan-Warner が見出したある非線形偏微分方程式の可解性の障害にある.この非線形問題は微分幾何学的に表現すると,2次元単位球面に滑らかな関数 k を任意に与えたとき,計量 g に適当な正の関数 f をかけて得られる計量 fg が k をガウス曲率になるように,f を決めることができるか,という問題である.これは Nirenberg の問題と呼ばれ,現時点でも完全な答えは得られていない.2次元球面を1次元複素射影空間とみなし,更に Fano 多様体の特別な場合とみなして,Fano 多様体の GIT 安定性として定式化したのは Gang Tian であり(1997),
つづく
292:132人目の素数さん
23/03/10 12:03:11.70 ghglJniN.net
>>272
つづき
さらに一般の偏極多様体に一般化したのは Simon K. Donaldson である(2002).GIT 安定性はモーメント写像を用いた描像があり,有限次元シンプレクティック幾何の形式的議論が,非線形偏微分方程式を解くにあたっての関数空間における無限次元シンプレクティック幾何的な議論の適切な方向を探る指針を与える.Fano 多様体においては,K安定性がモンジュ・アンペール方程式の可解性と同値であり,従ってケーラー・アインシュタイン計量の存在と同値であることが2012年頃,Chen-Donaldson-Sun と Tian によって証明された.モーメント写像を用いた描像を用いると,他の色々な非線形問題においても同じパターンで,K安定性と可解性の同値性を証明する問題として定式化される.
2018年03月10日(土)
14:30-15:30 数理科学研究科棟(駒場) 大講義室号室
川又雄二郎 氏 (東大数理)
双有理幾何学と導来圏 (JAPANESE)
[ 講演概要 ]
極小モデル理論によれば、代数多様体の間の双有理写像は基本的な双有理写像(フリップや因子収縮写像)に分解され、双有理幾何学は双正則幾何学に帰着される。その際の道案内になるのが標準因子Kである。代数多様体上の幾何学はその上の連接層によって表現されるが、連接層全体のなすアーベル圏から、複体を考え局所化することによって対称性がアップした導来圏Dが得られる。Kの変化とDの変化の間には思いがけず密接な関係が観測された。一方、有限群による商特異点の極小特異点解消(幾何学)とその群の表現(代数)の間には隠れた関係(マッカイ対応)が観測される。これらを総合した予想としてDK予想がある。最近の進展について解説する。
(引用終り)
以上
要するに、
数学とその応用分野の物理などとの交流も、大事ってことかな
293:132人目の素数さん
23/03/10 12:04:31.82 WDvXIOZ/.net
>>270
私にそんな文章書ける訳ないだろw
294:132人目の素数さん
23/03/10 12:11:56.34 ghglJniN.net
>>196
>この先量子力学ではルジャンドル多項式とかラゲール多項式とか直交多項式がいっぱい
>出てきます。でもあんまりそこで深入りしちゃうと挫折します。
>とりあえず調和振動子のシュレディンガー方程式を解くと
>エルミート多項式が出てくるというぐらいで次々進んでいった方がいいです。
>量子力学は数学ではなく物理なので数学に囚われて物理が疎かになってはいけません。
ありがとう
調和振動子のシュレディンガー方程式の解が出てきたことは覚えているが
”エルミート多項式”という名前は、記憶ない
多分、名前を出さずに説明していたかも
”ラゲール”は、記憶ある
”およ”と思ったけど、上記のように深入り�
295:ケずに流しましたw 余談ですが、いまどき(2023年)は、こういうのはソフト内で処理されて 結果だけは、細かい理論を知らずとも、得られる時代みたいですね (シュレディンガー方程式の解を、数値的に解く分野では)
296:132人目の素数さん
23/03/10 12:12:12.93 WDvXIOZ/.net
まあ、多変数関数論は研究が難しいからやめといた方がいい
297:132人目の素数さん
23/03/10 12:12:37.95 YXTEQX3G.net
>>272
英文だと例えばこれなど
URLリンク(www.ias.edu)
「正則モース不等式」はあまり聞かないけど
複素モース不等式はこの意味です。
298:132人目の素数さん
23/03/10 12:15:13.32 YXTEQX3G.net
>>276
経験者の方ですか?
299:132人目の素数さん
23/03/10 12:19:41.97 ghglJniN.net
>>201
>>乙とかいう東京●●大●部のしかも応用数学の落ちこぼれは
>>聞きかじりの知識をまったく分かりもせずに振り回すホラ吹き
>スレ主がしょうもないこと書き出したから特別書いたが、ベルグマン核は簡単な話ではない
>解析学の基礎や一松本にはベルグマン核のことは載っている
>ま、卒業後も数学は努力次第で何とかなるから、
>数学では大学の所属や成績は当てにならず、関係ないというのが私の持論だ
おっちゃん
レスありがとう
”ベルグマン核”のこと、ありがとう
また来てね
300:132人目の素数さん
23/03/10 12:22:39.50 WDvXIOZ/.net
>>278
違うけど、多変数関数論だけを研究するのはテキストだけでは出来ず大変だよ
他の分野と絡ませないと失敗する可能性が大きい
301:132人目の素数さん
23/03/10 13:00:35.67 ghglJniN.net
>>278
>経験者の方ですか?
横レス失礼
>>276 ID:WDvXIOZ/氏は、
>>200に書込みがあるごとく
東京理科大の数学系(正確には数学科ではないようす)出身の
民間の数学研究者です
伝説の1998年東大超難問の年に入学したそうな(東大を受けたかは不明)
URLリンク(examist.jp)
受験の月
1998年 東京大学 大学入試史上No.1の超難問~20年目の真実~
302:132人目の素数さん
23/03/10 13:38:28.20 ghglJniN.net
>>277
ああ、ありがとう
WittenさんのMORSE理論ね
これ話だけは、旧ガロアスレで取り上げたことがある
Wittenさんが、電話で師匠のAtiyah氏に「ようやくMORSEが分かりました」と話したとか
下記は、もう古典かな
URLリンク(www.ias.edu)
Institute for Advanced Study
HOLOMORPHIC MORSE INEQUALITIES
Edward Witten 1984?
Given a holomorphic vector field V on a compact complex manifold M,the Atiyah-Bott holomorphic Lefschetz formula expresses the Chern numbers ofM in terms of the zeros of V. In this article, it is shown that if M is aKahler manifold and V generates an isometry of M, the holomorphic Lefschetzformula can be generalized to a system of inequalities, analogous to theMorse inequalities for real manifolds
I would like to thank R. Bott for introducing me to Morse theory and for many helpful discussions of the subject.
(引用終り)
キーワード検索すると ”?Demailly - 被引用数: 111”か。なるほど
おっと、今日は仕事が多いので、この程度で失礼します
検索 "Holomorphic Morse Inequalities witten"
Holomorphic Morse Inequalities witten の学術記事
Holomorphic morse inequalities - ?Demailly - 被引用数: 111
Holomorphic Morse inequalities and Bergman kernels - ?Ma - 被引用数: 495
… holomorphic Morse inequalities. I. Heat kernel proof - ?Mathai - 被引用数: 17
303:132人目の素数さん
23/03/10 14:05:11.84 mCwkYGqk.net
ID:ghglJniN
素人は黙ろうな
口が💩臭いよ
304:132人目の素数さん
23/03/10 14:10:54.75 mCwkYGqk.net
ID:ghglJniNは
自称大阪大学工学部卒
実際大阪●●大学工学部卒
のド素人
還暦過ぎの耄碌爺で、数学といえば
ガロア理論かエキゾチック球面しか
知らん哀れっぷり
305:132人目の素数さん
23/03/10 14:44:58.81 YXTEQX3G.net
>>Holomorphic Morse inequalities and Bergman kernels - ?Ma - 被引用数: 495
これは出版賞を受賞した。
著者はXiaonan MaとGeorge Marinescu
306:132人目の素数さん
23/03/10 21:36:45.78 3WPA9AgT.net
>>282
>WittenさんのMORSE理論ね
>URLリンク(www.ias.edu)
>Institute for Advanced Study
>HOLOMORPHIC MORSE INEQUALITIES
>Edward Witten 1984?
追加
これの References
[2] E. Witten, "Supersymmetry and Morse Theory," to appear in J. Diff. Geom.
とあるが、これが、超有名ですね
Witten, Edward (1982). "Super-symmetry and Morse Theory". Journal of Differential Geometry
下記のE. Witten 氏の業績 I 江口徹、E. Witten 氏の業績 II 深谷賢治 ご参照
なので、上記は1984ではなく、1982よりも以前執筆の論文ですね
(参考)
URLリンク(en.wikipedia.org)
Edward Witten
A third area mentioned in Atiyah's address is Witten's work relating supersymmetry and Morse theory,[24] a branch of mathematics that studies the topology of manifolds using the concept of a differentiable function. Witten's work gave a physical proof of a classical result, the Morse inequalities, by interpreting the theory in terms of supersymmetric quantum mechanics.[citation needed]
References
24 Witten, Edward (1982). "Super-symmetry and Morse Theory". Journal of Differential Geometry. 17 (4): 661?692. doi:10.4310/jdg/1214437492.
URLリンク(www.mathsoc.jp)
E. Witten 氏の業績 I 江口徹
今回の Fields 賞は受賞者4名の内3名までが数理物理学に関連した仕事で受賞している。 特にその内1人は物理学者であり, まことに著しい現象といえる。
また超対称性の自発的破れの研究に端を発した有名な Witten 指数の導入とその指数理論 [8], Morse 理論への応用 [9] がある.
Witten 氏の代表的論文
[9] E. Witten, Supersymmetry and Morse Theory, J.Diff. Geom. 17 : 661, 1982
つづく
307:132人目の素数さん
23/03/10 21:37:09.68 3WPA9AgT.net
>>286
つづき
URLリンク(www.mathsoc.jp)
E. Witten 氏の業績 II 深谷賢治
今回のE. Witten 氏(以後敬称略)のフィールズ賞受賞はいろいろな意味で注目すべきできごとである。その一つの理由は Witten が物理学者であることである。
§ 2. Morse 理論
[1] は Witten が純粋数学(こういう分け方はあまり意味がないが)について書いた最初の論文でいろいろな意味で彼のその後の数学上の仕事の雛形になっている。この論文は含蓄に富んでいて要約するのは困難であるが,まずとりあえず数学的に定式化できる部分だけを取り出してのべてみる。 (こうしてしまうことは矮小化であることを始めにおことわりしておく。)
(2.5)は次のようにして計算できる(と [1] にはのべられている。)
文献(引用した順: 最小限にとどめた。)
[1] E. Witten, Super symmetry and Morse theory, J.Diff. Geom., 17 (1982), 661-692.
(引用終り)
以上
308:132人目の素数さん
23/03/10 21:44:40.58 3WPA9AgT.net
>>285
ああ
ありがとうございます
まあ、私ら素人なので
下記も貼りますね
URLリンク(ja.wikipedia.org)
309:9%E7%90%86%E8%AB%96 モース理論 微分トポロジーにおいて、モース理論(モースりろん、英: Morse theory)は、多様体上の微分可能函数を研究することにより、多様体の位相的性質の分析を可能とする。マーストン・モース(英語版) (Marston Morse) の基本的な見方に従うと、多様体上の典型的な微分可能函数はその位相的性質を極めて直接的に反映する。モース理論は、多様体上のCW構造やハンドル分解(英語版)を見つけたり、多様体のホモロジーの本質的な情報をもたらす。 モース以前は、アーサー・ケイリー (Arthur Cayley) とジェームズ・クラーク・マクスウェル (James Clerk Maxwell) がトポグラフィーの脈絡で、モース理論のいくつかのアイデアを考え出した。モースの元来の応用は、測地線の理論(経路上のエネルギー汎函数の臨界点への応用であった。これらのテクニックは、ラウル・ボット (Raoul Bott) の周期性定理(英語版)の証明に使われた。 モース理論の複素多様体での類似が、ピカール・レフシェッツ理論である。 基本概念 公式な展開 モース不等式 モース理論は多様体のホモロジーのいくつかの強い結果を証明することに使うことができる。 モースホモロジー モースホモロジー(英語版)(Morse homology)は、滑らかな多様体(smooth manifold)のホモロジーを理解するためのとくに容易な方法である。モースホモロジーは、モース函数とリーマン計量を選択することにより定義する。基本定理は、結果として出てくるホモロジーは多様体の不変量である(つまり、函数と計量とは独立)という定理で、多様体の特異ホモロジーと同型となる。この定理はモースホモロジーと特異ベッチ数が一致することを意味し、モース不等式の証明となっている。モースホモロジーの無限次元の類似はフレアーホモロジーである。 エドワード・ウィッテン(Edward Witten)は、1982年に調和函数を使い、モース理論へのアプローチする別の方法を開発した。[2]
310:132人目の素数さん
23/03/10 21:47:50.32 14LHUOWE.net
解析学者の中には
モース理論の一つの解釈に過ぎないものを
無理やり持ち上げたという趣旨の批判も
あったような気がする
311:132人目の素数さん
23/03/10 21:50:37.19 14LHUOWE.net
>>エドワード・ウィッテン(Edward Witten)は、
>>1982年に調和函数を使い、
>>モース理論へのアプローチする別の方法を開発した。[2]
「調和関数を使い」というのは誤訳だろう
312:132人目の素数さん
23/03/10 22:43:56.17 14LHUOWE.net
Wittenの論文の基本的なアイディアは
Morse関数の臨界点に台が収縮するような
固有関数を持つラプラシアンの変形族を
モース関数を使って簡単に構成できるという点であった。
313:132人目の素数さん
23/03/11 00:20:17.71 8g4xRswg.net
>>290
>>>エドワード・ウィッテン(Edward Witten)は、
>>> 1982年に調和函数を使い、
>>>モース理論へのアプローチする別の方法を開発した。[2]
>「調和関数を使い」というのは誤訳だろう
なるほど
こういうときは、英文wikipediaをチェックすると
下記ですね
URLリンク(en.wikipedia.org)
Morse theory
Morse inequalities
In 1982 Edward Witten developed an analytic approach to the Morse inequalities by considering the de Rham complex for the perturbed operator dt=e^(-tf) de(tf).[1][2]
たぶん元の英文が書き換わったのでしょうね?
Witten, Edward (1982)のPDFが読める
References
[1] Witten, Edward (1982). "Supersymmetry and Morse theory". J. Differential Geom. 17 (4): 661?692. doi:10.4310/jdg/1214437492
[2] Roe, John (1998). Elliptic Operators, Topology and Asymptotic Method. Pitman Research Notes in Mathematics Series. Vol. 395 (2nd ed.). Longman. ISBN 0582325021.
URLリンク(doi.org)
[1] Witten, Edward (1982). "Supersymmetry and Morse theory". J. Differential Geom.
つづく
314:132人目の素数さん
23/03/11 00:22:24.08 8g4xRswg.net
>>292
つづき
5. Conclusions
It is not at all clear whether supersymmetry plays a role in nature. But if it
does, this is a field in which mathematical input may make a significant
contribution to physics.
One outstanding mathematical problem is certainly the problem of giving a
sound mathematical formulation to the infinite dimensional structures discussed
in §4. This is (part of) "constructive field theory".
Another outstanding question is the generalization of the considerations of
§4 to other theories. Supersymmetric scalar field theory in the interesting case
of three space dimensions may be formulated by analogy with the discussion in
§4 but with one essential difference. The starting point is Kahler geometry
rather than real differential geometry. However, for supersymmetric gauge
theories it is not at all clear what the right mathematical structure is, and this is
even less clear in the case of supersymmetric theories of gravity. If supersymmetry
does play a role in physics, many other questions calling for a significant
application of mathematical ideas are bound to emerge in the course of time.
(引用終り)
数学屋さんのための注
1)fieldは、物理の”場”です。数学の”体”ではない!w
2)supersymmetryは、フェルミオンとボソンの入れ替えで不変だということ 参考 超対称性: URLリンク(ja.wikipedia.org)
3)"constructive field theory"は、確か 実際の物理の場ではなく、数学的なトイモデル(簡単化したモデル)を考えたという意味だった
4)scalar field theory は、これに対比されるベクトル場の理論というのがあって、それとの区別を言っていると思う
この4つくらいを注意して読めば、Conclusions だけは 読めるでしょう(私もそんな程度です)
以上
315:132人目の素数さん
23/03/11 01:47:21.25 JWnYr47h.net
シグマ模型からの調和写像のことだろ
316:132人目の素数さん
23/03/11 07:00:06.08 qzWlKTuZ.net
物Morse
>>286-288 >>292-293
中卒素人がわけもわからずコピペすんな
実数の定義と線形代数の定義でも復習しとけ
>Conclusions だけは 読めるでしょう(私もそんな程度です)
読めてねえよ ゴキブリ(嘲)
>>289-291 >>294
レス乞食のド素人相手にレスすんな
論文書け
317:132人目の素数さん
23/03/11 07:01:51.39 qzWlKTuZ.net
数学で数式ぬきの平文だけ読むのは明らかに馬鹿読み
1は実質中卒だから馬鹿読みしかできない
三角関数の加法公式も導けない馬鹿に数学なんか絶対無理
諦めろ ゴキブリ!!!
318:132人目の素数さん
23/03/11 07:07:16.22 qzWlKTuZ.net
1の馬鹿フォーマット
・レスに対して慇懃無礼な「ありがとうございます」
・数学の中身については何も云えないので「貼りますね」一点張り
(参考)
つづく
つづき
(引用終り)
以上
しかも引用は数式抜きのどうでもいい箇所ばかり
数式は考えなしにコピペできないからイヤなんだと
おまえが数式も読めないだけだろw
319:132人目の素数さん
23/03/11 07:29:15.67 qzWlKTuZ.net
ゴキブリには数学に関するネタという「エサ」を与えないこと
「エサ」を与えると、際限なくコピペレスします
エサを与えな�
320:ッれば死に絶えます ゴキブリは抹殺しよう!!!
321:132人目の素数さん
23/03/11 07:33:09.01 qzWlKTuZ.net
ゴキブリにちょうどいいネタ
・有理数の切断で実数が実現できることの証明
・逆行列が存在する必要十分条件が行列式が0でないことの証明
要するに大一のしょっぱなの定番ネタ
ここからゴキブリは全然分かってないから!
322:132人目の素数さん
23/03/11 07:37:07.27 qzWlKTuZ.net
ゴキブリには難しいネタ
・陰関数定理、逆関数定理
・グリーンの定理
要するに大一終りから大二あたりのネタ
まあ、ゴキブリには生涯理解できないだろうw
323:132人目の素数さん
23/03/11 08:31:29.51 UqfwDfEV.net
>>295
>>物Morse
>>レス乞食のド素人相手にレスすんな
>>論文書け
そう言ってもらえるとなんだかうれしい。
実は上のレスは5月が締め切りの
長めのレビューのような論文の下書きの意味もあります。
324:132人目の素数さん
23/03/11 08:51:55.74 UqfwDfEV.net
Morse-->Atiyah-Bott--->Wittenというのは
一つの系譜だろう。
Riemann--->Klein--->Hilbertの系列ともつながりは深い。
ちなみに、Riemannの写像定理に初めて完全な証明を与えたのは
Osgoodであるとされる。このOsgoodという人は米国出身の
数学者としては初めて活発な研究活動をした人としても
有名で、米国数学界の会長にまでなったが
Morseの妻と恋仲になり結婚してしまった。
離婚後2年たっていたが、それでもハーバード大の学長に
とがめられ、退職を余儀なくされた。
325:132人目の素数さん
23/03/11 08:52:07.17 8g4xRswg.net
>>292-293 追加
>URLリンク(doi.org)
>[1] Witten, Edward (1982). "Supersymmetry and Morse theory". J. Differential Geom.
本文 P669
”The effect of tunneling can be calculated in the WKB approximation, or, in
a current language, by means of instantons [14]. Tunneling effects often
remove spurious degeneracies which exist in perturbation theory, and so it is in
this case.”
WKBとinstantonの解説を下記に追加します
URLリンク(ja.wikipedia.org)
WKB近似
物理学、特に量子力学において、WKB近似(WKBきんじ、英: WKB approximation)、またはWKB法とは、シュレディンガー方程式の半古典論的な近似解法の一つ[1][2]。プランク定数を古典力学と量子力学を結びつける摂動パラメーターとみなした摂動であり、古典力学と量子力学の対応関係を説明する新たな観点を与える。WKBの名は、量子力学の研究の中で理論の発展に寄与した3人の物理学者ウェンツェル(英語版)(Wentzel)、クラマース(Kramers)、ブリルアン(Brillouin)らの頭文字に因むものである。なお、応用数学者で地球科学者であるジェフリーズ(Jeffreys)も独自にこの手法を考案し、多くの問題に適用したことから、その名を加え、WKBJ近似とも呼ばれる。WKB近似は最高階の導関数に摂動パラメーターが乗じられた特異摂動問題を扱う手法の一つであり、シュレディンガー方程式のみならず、より一般的な線形微分方程式の特異摂動問題にも応用される[3]。
概要
略
WKB近似により、古典論的に粒子が到達可能な領域での近似解と、古典論的に粒子が到達不可能ではあるが、量子論的なトンネル効果によって存在可能となる領域での近似解が得られる。この二つの領域を隔てる転回点と呼ばれる特異点では、二つの領域での解を結ぶ必要があり、接続の問題が現れる。
つづく
326:132人目の素数さん
23/03/11 08:53:07.52 8g4xRswg.net
>>303
つづき
URLリンク(en.wikipedia.org)
Instanton
An instanton (or pseudoparticle
327:[1][2][3]) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. More precisely, it is a solution to the equations of motion of the classical field theory on a Euclidean spacetime. In such quantum theories, solutions to the equations of motion may be thought of as critical points of the action. The critical points of the action may be local maxima of the action, local minima, or saddle points. Instantons are important in quantum field theory because: 略 (引用終り) 以上
328:132人目の素数さん
23/03/11 09:10:38.69 8g4xRswg.net
>>272
>木田良才 氏 (東京大学数理科学研究科)
>驚くべきことに,そのアイデアはパーコレーションの理論に基づいている(Gaboriau-Lyons)
パーコレーションね
デュミニル=コパン 2022 フィールズ賞
メモ貼るね
URLリンク(ja.wikipedia.org)
ユーゴー・デュミニル=コパン(Hugo Duminil-Copin, 1985年8月26日 - )は、確率論を専門とするフランスの数学者。2022年にフィールズ賞を受賞した。
統計力学上の問題を扱うために数理物理学で用いられるパーコレーション理論(英語版)に関心を徐々に持ち始めた[1]。
2008年、デュミニル=コパンはスタニスラフ・スミルノフの下で博士論文を執筆するためジェノヴァ大学へ移った。二人はパーコレーション理論と格子内の頂点と辺を用いて流体の流れとそれに伴う相転移をモデル化した。二人は六方格子(英語版)において可能な自己回避ウォーク(英語版)の数を調べ、組み合わせ論をパーコレーション理論に応用した。この成果は2012年のAnnals of Mathematicsに掲載され、同年デュミニル=コパンは27歳で博士号を取得した[1]。
デュミニル=コパンの業績は統計物理学の数理分野に集中している。
2022年、デュミニル=コパンは「統計物理学、特に3次元および4次元の相転移の確率的理論における長年の問題を解決した業績」に対して、フィールズ賞を受賞した[8][9]。ウェンデリン・ウェルナーはパーコレーション理論の分野の一般化はデュミニル=コパンの功績だと讃え、「全てがより簡単になり、合理化された。結果はより強力になった。…これらの物理現象の理解はまるまる置き換わった。」と述べた[1]。ウェルナーは、パーコレーション理論における「主要な未解決問題のほとんど半分はデュミニル=コパンが解いてしまった」と述べた[1]。
つづく
329:132人目の素数さん
23/03/11 09:11:04.63 8g4xRswg.net
>>305
つづき
URLリンク(en.wikipedia.org)
Percolation theory
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles network theory and percolation.
History
The Flory?Stockmayer theory was the first theory investigating percolation processes.[2]
The history of the percolation model as we know it has its root in the coal industry. Since the industrial revolution, the economical importance of this source of energy fostered many scientific studies to understand its composition and optimize its use.
Broadbent and Hammersley introduced in their article of 1957 a mathematical model to model this phenomen
330:on, that is percolation. (引用終り) 以上
331:132人目の素数さん
23/03/11 09:49:22.12 qzWlKTuZ.net
>>301
>実は上のレスは5月が締め切りの
>長めのレビューのような論文の
>下書きの意味もあります。
あんた、誰?
332:132人目の素数さん
23/03/11 09:52:16.63 qzWlKTuZ.net
>>303-306
大学1年4月の実数の定義で落ちこぼれたゴキブリは
数学に一切興味持つな 数学板から失せろ
どこぞのネトイヨ板でニッポン万歳でも叫んでろ
正真正銘の自己愛●違いが
333:132人目の素数さん
23/03/11 10:05:39.32 8g4xRswg.net
>>302
ありがとう
>Osgoodであるとされる
おっちゃんのおすすめで、下記 一松 信先生を買った
書評にもあるけど、一松信先生の層の説明が、クラシックで分かり易かったね
大沢健夫『複素解析幾何と∂-方程式』は、表紙と中身をチラ見した記憶があるが、たぶん現代的すぎるのか、2~3ページで閉じた
一松信先生を読んだいまなら、もう少し読めるかも
ああ、Osgoodさんだったね、一松信先生の本にあったなと思い出した
Osgoodの定理とかもあるけど、巻末に 多変数解析函数の小史と展望の章があって
Osgoodが写真入りで、触れられているね
「一松本にはベルグマン核のことは載っている」>>201というから
索引を見ると、P68か 定義4.5 ”・・再生核をベルグマンの核関数という”とあるから、これか!
そのすぐ上に「・・絶対値の2乗が積分可能な正則関数のなず空間をHとして・・」とあるね
(参考)
URLリンク(www.)アマゾン
多変数解析函数論 Tankobon Hardcover ? May 1, 2016
by 一松 信
書評
susumukuni
4.0 out of 5 stars 一松先生の先見性が際立つ歴史的意義を有する名著
Reviewed in Japan on November 13, 2018
多変数複素解析の現代的な入門書では、層とコホモロジーという極めて有用な道具をまず準備し略
層とコホモロジーが学部生や愛好家にとっても常識化している今日では、構造層の連接性に加え、解析的集合の幾何学的イデアル層および解析空間の正規化層の連接性をカバーする和書の教科書が何冊も存在する。例えば、樋口・吉永・渡辺著『多変数複素解析入門』、大沢健夫『複素解析幾何と∂-方程式』、野口潤次郎『多変数解析関数論』の何れにも優れた解説がある。これらの書は何れも、本書と多くの共通点を持つ分かり易い現代的な教科書として、併せてお薦めできる。
つづく
334:132人目の素数さん
23/03/11 10:06:20.86 8g4xRswg.net
>>309
つづき
以下は本音の部分で、本書の復刻に懐疑的であった心境が変化していった事を述べたものです。
本書の復刻版が出版されると知ったとき、「歴史的な名著であるのは確かだけれども、既に教育的な役割を終えている、この本をあえて復刊する意味は何なのか?」と非常に疑問に思った。多変数関数論の現代的な入門書では、層とコホモロジーという極めて有用な道具をまず準備し、それを使ってこの理論の精華というべき幾つか(グラウエルトとレンメルトによると、基本的なものは四つ)の「連接性定理」を確立し、その応用を解説するのが一つの標準コースとされている。この観点からみると、構造層の連接性は証明されているが、解析的集合の幾何学的イデアル層の連接性や解析空間の正規化層の連接性に殆ど言及していない本書は内容が不足しており、多変数関数論の標準的なテキストとしてお薦めできない事になる。
一方、連接層とそのコホモロジー、スタイン多様体、さらにグラウエルトによる(連接層のコホモロジー)有限性定理を用いるレヴィ問題の肯定的解決の別
335:証明、などを和書で最初に詳しく紹介した本書が長年に渡り日本の数学教育に果たした貢献の大きさは測り知れない、とこの分野の研究者や愛好家の多くの方々が認められるのではないかという思いもあった。私見ではあるが、本書の最大の魅力は1960年の出版当時に一松先生が本書の中で示された先見性の素晴らしさにあるのではないかと思っている。 岡先生は、層とコホモロジーを使用することに対し非常に否定的であったことはよく知られているが、層とコホモロジーが非常に便利な言語であり、また有用なツールであることを否定する人は今日では恐らく皆無ではなかろうか。 (引用終り) 以上
336:132人目の素数さん
23/03/11 10:29:21.26 8g4xRswg.net
>>307
>>実は上のレスは5月が締め切りの
>>長めのレビューのような論文の
>>下書きの意味もあります。
>あんた、誰?
東大数学科で、次期日銀総裁の植田氏とゼミで一緒だったという人でしょ
肥田晴三氏の活躍を見て、数論を諦めたとかあったし
解析くわしいし、ご専門はその”長めのレビューのような論文”>>269(>>11)関連なのでしょう
世の中、数学を作る人がいて、数学を使う人がいる
全員が数学者になったら困るでしょ? 物理屋も必要だし、医者も必要だし
次期日銀総裁の植田氏のように、経済学者になった人もいるそうだが、経済学者もありなんじゃない?
あんたみたいな数学科で落ちこぼれて35年の人も必要かもねwwwww スレリンク(math板:5番)
おっと、3月年度末で忙しいから
ペース落とすよ、悪しからず
337:132人目の素数さん
23/03/11 10:37:27.14 8g4xRswg.net
>>309
おっと
これだけメモ貼るね
URLリンク(ja.wikipedia.org)
ベルグマン核
ベルグマン核 (ベルグマンかく、英: Bergman kernel) は、数学の多変数複素関数論において、領域 D in Cn 上のすべての二乗可積分正則関数からなるヒルベルト空間に対する再生核(英語版)である。ステファン・ベルグマン(英語版)に因んで名づけられている。
URLリンク(en.wikipedia.org)
Bergman kernel
URLリンク(en.wikipedia.org)
Stefan Bergman
Stefan Bergman (5 May 1895 ? 6 June 1977) was a Congress Poland-born American mathematician whose primary work was in complex analysis.
338:132人目の素数さん
23/03/11 11:16:27.52 qzWlKTuZ.net
>>311
>>あんた、誰?
> ●大●学科で、●●氏とゼミで一緒だったという人でしょ
ド素人は口だすな
誰、と訊いたら名前をたずねてるに決まってる
名前を言いたげな態度だから訊いたんだよ
わかれよ ド素人
ていうか、大学一年で落ちこぼれて40年の
生涯ド素人は無駄コピペやめろ
話が寸断されてつながらねえんだよ
劣等生の貴様の自己顕示の場じゃねえぞ
339:132人目の素数さん
23/03/11 11:17:11.52 qzWlKTuZ.net
>3月年度末で忙しいからペース落とすよ、悪しからず
永遠に書き込むな ゴキブリ
340:132人目の素数さん
23/03/11 11:17:44.74 qzWlKTuZ.net
ゴキブリが書き込めないとわかったら
速攻埋めるか(ニヤリ)
341:132人目の素数さん
23/03/11 11:18:41.32 qzWlKTuZ.net
だいたいラグランジュ分解式も使えねえくせに
●●の一つ覚えでガロアガロアうっせぇんだよ
貴様はガマガエルかw
342:132人目の素数さん
23/03/11 11:21:49.48 qzWlKTuZ.net
さて問題
「有理数の切断の集合全体についての切断を考えた場合
下組の最大元、上組の最小元ともにない
という場合はあり得ないことを示せ」
まあ、昭和のオチコボレ1には到底無理だろう
343:132人目の素数さん
23/03/11 11:25:01.22 qzWlKTuZ.net
アホ1は根性がない
実にしばしば「チラ見」という言葉を用いるが
ちょっと見て分からないとすぐ諦める
要するに一見して分かること�
344:カゃないと理解できない 中学高校の数学はそんな程度のうっすい内容だが 大学もそんなもんだろとなめてかかって挫折 1の人生、18がピークだったか ま、そんなアホは沢山いるよ よかったな、仲間が沢山いて
345:132人目の素数さん
23/03/11 11:28:55.10 qzWlKTuZ.net
アホ1は大学1年の挫折が悔しくて
数学書を買いまくる悪癖に耽溺してるらしい
しかし読んでも全く中身が読めないんだから全く無駄
まあ使った金なんてたかが知れてるだろうけどな
アホ1は自分がなんで数学が理解できなかったか
反省できないほどアホらしい
要するに思考力がほぼゼロってことなんだがね
直感が第一!とか喚くやつは大体そう
要するに落ち着きがないんだな
ADHDかもな
346:132人目の素数さん
23/03/11 11:31:43.86 qzWlKTuZ.net
>>319
ADHDにはメチルフェニデートがいいらしいぞ
昔、リタリン、といってたヤツだけどな
347:132人目の素数さん
23/03/11 11:32:43.17 qzWlKTuZ.net
ということで
348:132人目の素数さん
23/03/11 11:33:05.44 qzWlKTuZ.net
午前はここまで
349:132人目の素数さん
23/03/11 12:04:15.97 54JhujDy.net
>>313
>>誰、と訊いたら名前をたずねてるに決まってる
>>名前を言いたげな態度だから訊いたんだよ
そういう言葉を聞くと
大昔映画館で聞いた「猪口才な小僧め、名を、名を名乗れ」
という有名なセリフを思い出してしまう。
350:132人目の素数さん
23/03/11 14:41:39.60 qzWlKTuZ.net
>>323
> 「猪口才な小僧め、名を、名を名乗れ」
そういう主旨ではない
自分は1とは違って5chが便所だとは思っていない
真面目な書き込みであるなら実名を名乗っても
なんら不名誉なことはないと考えてお尋ねした
とはいえもちろん答えなくても結構である
答えたために早速1のような馬鹿が
e-mailにガンガン投書するに違いないからである
ただそれは実に残念なことだと申し上げておく
まったく1のような正真正銘の馬鹿のせいで・・・
351:132人目の素数さん
23/03/11 14:43:01.35 qzWlKTuZ.net
1は馬鹿である上に独善的な●違いである
自分こそが神であり自分のやることは完全な正義だと自惚れている
彼こそ悪魔であり彼のやることは完全な悪事であるのだが
352:132人目の素数さん
23/03/11 15:16:50.01 j4fLuNA0.net
神にも悪魔にも居場所を与えられるのが
人間の特権かもしれない
353:132人目の素数さん
23/03/11 16:25:32.30 qzWlKTuZ.net
>>326
馬鹿に居場所はない
迷惑なだけ
354:132人目の素数さん
23/03/11 18:33:47.95 j4fLuNA0.net
>>327
確かに、少なくとも自分の中には
馬鹿に居心地のよい場所を見つけるのは
難しい。無知こそ最大の悪徳であるから。
355:132人目の素数さん
23/03/12 07:17:55.65 SSHPn9Ck.net
>>328
無知は悪ではない
無知を隠蔽する偽知こそが悪徳
356:132人目の素数さん
23/03/12 07:22:31.09 SSHPn9Ck.net
1には解けぬ問題
Q1.実数体R上の有限次元線型空間である可換体はRと複素数体Cのみであることを示せ
Q2.実数体R上の有限次元線型空間である斜体はR,Cと四元数体Hのみであることを示せ
357:132人目の素数さん
23/03/12 07:30:27.61 JXqjWJn3.net
>>無知を隠蔽する偽知こそが悪徳
それも無知によるものという考え方もあるだろう
真の敵はつねに身中にある
358:132人目の素数さん
23/03/12 08:15:20.30 SSHPn9Ck.net
>>331
別に無知でもいいと思うなら偽る理由がない
なんでもかんでも知ることが正義と
思索抜きで脊髄反射するなら狂ってる
359:132人目の素数さん
23/03/12 08:17:54.39 SSHPn9Ck.net
別に数学に興味ない奴に数学を無理矢理分からせる必要はない
数学でないものを数学だとウソついて出すくらいなら
数学なんか全然わからんしわかりたくもないと
開き直るほうが全然マシじゃね? 知らんけど
360:132人目の素数さん
23/03/12 08:43:38.10 JXqjWJn3.net
>>別に無知でもいいと思うなら偽る理由がない
無知でもいいと思えるのは一つの達観で
どうしても
「無知であることくらいは知っている」と
開き直りたくなるもの
>>数学でないものを数学だとウソついて出す
数学が分かっている者には
数学とそうでないものの見分けがつくというのは
ものによってはそうだろうが
素人のそういう誤りにいちいち目くじらを
立てなくてもよいような気がする。
誤りはピンポイントで短く指摘するのがよい。
361:132人目の素数さん
23/03/12 10:12:53.73 SSHPn9Ck.net
>>334
> 無知でもいいと思えるのは一つの達観で
> どうしても
> 「無知であることくらいは知っている」と
> 開き直りたくなるもの
そもそも
「数学に興味ないのも結構」
「全てのヒトに数学に興味もてなんて強制してもしゃあない」
といってる
> 数学が分かっている者には
> 数学とそうでないものの見分けがつくというのは
> ものによってはそうだろうが
> 素人のそういう誤りにいちいち目くじらを
> 立てなくてもよいような気がする。
一見さんの書き込みには
別にさらっと対応すればいい
と俺も思うよ
しかし常連が分かりもしないくせに
ドヤ顔で長文コピペを執拗に張り付ける
「荒らし行為」に対しては
「貴様、焼いて食うぞ この畜生が」
と言うのは当然
悪魔を生かせば悪魔に殺される
殺される前に敵を焼き殺せ!敵を食え!
362:132人目の素数さん
23/03/12 11:50:35.60 C7lF8F0b.net
>>335
>>そもそも
>> 「数学に興味ないのも結構」
>> 「全てのヒトに数学に興味もてなんて強制してもしゃあない」
>> といってる
教室の黒板の前でそういう態度をとるわけにはいかない。
プーチンが「負けるわけにはいかない」と思うのと同じ。
>>しかし常連が分かりもしないくせに
>>ドヤ顔で長文コピペを執拗に張り付ける
分からないから長文のコピペになるのだろう。
例えば330のQ2なら
「小野孝先生の有名な本のp.192-193」で十分なのだが。
363:132人目の素数さん
23/03/12 12:22:28.23 SSHPn9Ck.net
>>336
>> 「数学に興味ないのも結構」
>> 「全てのヒトに数学に興味もてなんて強制してもしゃあない」
> 教室の黒板の前でそういう態度をとるわけにはいかない。
数学科の学生全てが「数学に興味ある」というわけでもない
自分では数学が好きだと思ってたが
実はそれほどでもなかったと気づくことがある
それはそれで一つの発見
「負けるが勝ち」ということわざもある
ここで負けるのはもちろん教授ではなく学生
自分が本当にやりたいことは何なのか?
それが分かることが一番大事
数学が分かるかどうかは二の次
> プーチンが「負けるわけにはいかない」と思うのと同じ。
プーチンになったらアカンと思う
ゼレンスキーになってもアカンと思うが
いったんここで切る
あなたが誰か知らんし、
数学を教えることに対する意欲は認めるが
学生が意欲を持てないからといって
あなたが悪いわけではないし
学生が悪いわけでもない
要するに誰も悪くない
364:132人目の素数さん
23/03/12 12:30:55.91 SSHPn9Ck.net
>>336
>>分かりもしないくせに
>>ドヤ顔で長文コピペを執拗に張り付ける
>分からないから長文のコピペになるのだろう。
「わからんのにコピペ」はウソだから
絶対やるべきではない
>例えば330のQ2なら
>「小野孝先生の有名な本のp.192-193」
>で十分なのだが。
それも絶対アカン回答
1.そもそも小野孝先生の有名な本で分かるのはあんただけ
ここの連中はそもそも小野孝なんて太古の人は知らん
書名は必ず書くこと
2.書名とページだけ示せば十分というのが誤り
そもそもそんなことが知りたいのではなく
そこに何がどう書かれているのかが知りたい
また完璧な証明がもとめられているわけでもない
あなたが肝心だと思う事を2048バイト以内で書くことが重要
ということで
「小野孝先生の有名な本(書名を書くこと)のp.192-193」
に書いてあることを、2048バイト以内で書いてごらん
365:132人目の素数さん
23/03/12 13:10:34.09 C7lF8F0b.net
>>338
それができるくらいにうまく頭に入っていれば
最初からそうする。
ちょっと時間をかければ要点をまとめて
書くのは難しくないが
そこまで暇じゃない。
Q2を書いたあなたなら
余裕でできるはずだね。
一つお願いし
366:ますよ。
367:132人目の素数さん
23/03/12 15:32:11.76 SSHPn9Ck.net
>>339
要するに分かってないの?
小平邦彦が資格試験で学生を退学させた話
「口頭試問で何を質問しても、
どの本の何ページに書いてあるまでは
答えるが、何が書いてあるかは答えられない
n次方程式の根はたかだかn個であることの
証明も答えられない
数学の大学院の学生がこんな初等的な質問に
答えられないのは話にならないので、
委員全員一致で退学処分に決めた
当人はその後
”ワイエルシュトラスも試験に落ちた
自分はまったく失望しない”
と空威張りして去っていった
自分が数学を理解できてないことも
理解できないらしい」
こんな人は珍しいとおもったが
実はざらにいるらしい
日本死んだな
368:132人目の素数さん
23/03/12 18:31:04.26 C7lF8F0b.net
>>340
水を向けてくれてありがとう
2048バイトと言うのが分からなかったから書かなかったが
とりあえずR上の非可換な多元体Dが四元数体を含む理由だけ書いておく。
1,u,vをD内のR上独立な要素でu^2=v^2=-1を満たすものとする。
u+v,u-vが満たす2次方程式を
(u+v)^2=α(u+v)+β, (u-v)^2=γ(u-v)+δ (α、β,γ、δは実数)
として辺辺加えると
(α+γ)u+(α-γ)v+β+δ+4=0だが、1,u,vは独立だったから
α+γ=α-γ=β+δ+4=0
よってc=(uv+vu)/2と置けば(u+v)^2=2c-2<0, (u-v)^2=-2c-2<0となる。
そこでi=u, j=(v+cu)/√(1-c^2)),k=ijと置けば
D=R+Ri+Rj+Rkとなる。
小難しい技術的なところがあるので覚えられない。
Dがこれより真に大きくならない理由はさらに技術的になるので省略する。
369:132人目の素数さん
23/03/12 18:33:15.61 C7lF8F0b.net
訂正
D=R+Ri+Rj+Rkとなる。ーーー>DはR+Ri+Rj+Rkを含む。
370:132人目の素数さん
23/03/12 19:29:11.48 C7lF8F0b.net
>>340
書いた後で言うのも何だが
これが即答できなければ
あなたの基準では退学なのですか?
371:132人目の素数さん
23/03/13 06:40:34.15 ytumKkzO.net
圏をとっては日本一に、夢は大きな少年数学者。
372:132人目の素数さん
23/03/13 07:02:15.40 cTr5LNbf.net
なるほど
373:132人目の素数さん
23/03/13 07:07:24.72 ezr7ctRH.net
スレ止まったな
これで1が死んでくれればいうことなし
374:132人目の素数さん
23/03/13 07:27:42.09 UeELXD7y.net
なるほど
375:132人目の素数さん
23/03/13 10:39:38.22 hloIPBYf.net
>>341-342
まるほど。たくまずして、絶妙に詰んでいるかな、そのカキコで
376:132人目の素数さん
23/03/13 12:15:25.07 hloIPBYf.net
多元数は、旧ガロアスレでも、何度か取り上げている
例えば下記
現代数学の系譜11 ガロア理論を読む29
スレリンク(math板:30番)
30 名前:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/01/15(日) 15:30:32.80 ID:3YFHDxHU [26/31]
URLリンク(ja.wikipedia.org)
数の概念
様々な拡張法
これらを更に別の観点から拡張した体系が存在する。例えば、ものの個数の概念である自然数を拡張して基数が、ものの順番を表す意味での自然数�
377:フ拡張として順序数が定義される。複素数を更に拡張したものとして、四元数、八元数・十六元数などの体系がある。あるいは、実数に加えて無限小や無限大を含む超実数などの体系もある。 自然数 → 基数 基数 - 有限基数(= 自然数)、無限基数 自然数 → 順序数 順序数 - 有限順序数(= 自然数)、超限順序数 実数 → 複素数 → 四元数 → 八元数 → 十六元数 有理数 → p-進数 (+ 実数 → アデール) 実数 → 超実数 https://ja.wikipedia.org/wiki/%E8%B6%85%E5%AE%9F%E6%95%B0 超実数 1960年代にロビンソンは、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。これは、ロビンソンが描いた論理的な規則に従って操作されなかったならば、あらゆる無限小を含む証明が不健全になる恐れが残ることを示している。
378:132人目の素数さん
23/03/13 12:47:09.72 X2OTbYgy.net
>>349
植田蛮の定理については?
379:132人目の素数さん
23/03/13 13:36:10.92 hloIPBYf.net
>>347-348
>たくまずして、絶妙に詰んでいるかな、そのカキコで
補足
1)>>341-342は、完全解ではない(自ら書いてある通り)
2)よって、本来ならば 出題者が、それを補って自分の解答を書くべきところだが、それができないらしい
3)よって、絶妙に詰んでいるようだねw
380:132人目の素数さん
23/03/13 13:43:18.81 hloIPBYf.net
>>350
>植田蛮の定理については?
分かりません
「真空斬り」とかあったらしいが、覚えていない
URLリンク(ja.wikipedia.org)
赤胴鈴之助
URLリンク(ja.wikipedia.org)
ウェダーバーンの定理 (Wedderburn's theorem)
アルティン・ウェダーバーンの定理、半単純環と半単純多元環の分類
単位元と極小左イデアルを持つ単純環(英語版)上のウェダーバーンの定理
ウェダーバーンの小定理、有限斜体は可換体
381:132人目の素数さん
23/03/13 19:46:19.00 ezr7ctRH.net
>>351
1 回答できず詰み死!
死んだ死んだ大阪死んだ
382:132人目の素数さん
23/03/13 19:46:44.71 ezr7ctRH.net
大阪民国は日本にあらず
383:132人目の素数さん
23/03/13 21:09:37.16 UeELXD7y.net
>>352
>URLリンク(ja.wikipedia.org)
>ウェダーバーンの定理 (Wedderburn's theorem)
>アルティン・ウェダーバーンの定理、半単純環と半単純多元環の分類
なるほど、下記ですね
フロベニウスの定理ね、英文版には証明が詳しいね(下記)
(参考)ただし文字化けなおさず。本文参照ください
URLリンク(ja.wikipedia.org)
アルティン・ウェダーバーンの定理
アルティン・ウェダーバーンの定理 (英: Artin?Wedderburn theorem) は半単純環や半単純代数の分類定理である。
定理の主張
定理は、(アルティン)[注釈 1]半単純環 R はある有限個の ni 次行列環 Mni(Di) の直積に同型であると述べている[1]。ここで ni は正の整数、 Di は可除環であり、 両者とも添字 i の置換を除いて一意的に決定される。とくに、任意の単純左または右アルティン環は可除環 D 上の n 次行列環に同型で、n と D は両方とも一意的に決まる[2]。
直接の系として、アルティン・ウェダーバーンの定理は可除環上有限次元であるすべての単純環(単純代数)は行列環と同型であることを意味する。これはもともと J. H. M. Wedderburn (1908) の結果である。E. Artin (1927) は後にそれをアルティン環のケースに一般化した[注釈 2]。
R が可除環 E 上の有限次元単純代数であれば、D は E に含まれる必要はないことに注意せよ。例えば、複素数体上の行列環は実数体上の有限次元単純代数である。
アルティン・ウェダーバーンの定理は可除環上の単純環の分類を与えられた可除環を含む可除環の分類に帰着する。これをさらに単純化できる。D の中心は 体 K でなければならない。したがって R は K-代数であり、それ自身は K を中心としてもつ。有限次元単純代数 R はしたがって K 上の中心的単純代数である。それゆえアルティン・ウェダーバーンの定理は有限次元中心的単純代数の分類の問題を与えられた中心をもつ可除環の分類の問題に帰着する。
つづく
384:132人目の素数さん
23/03/13 21:10:58.75 UeELXD7y.net
>>355
つづき
例
R を実数体とし、C を複素数体とし、H を四元数体とする。
R 上のすべての有限次元単純代数は R, C, あるいは H 上の行列環でなければならない。R 上のすべての中心的単純代数は R あるいは H 上の行列環でなければならない。これらの結果はフロベニウスの定理から従う。
C 上のすべての有限次元単純代数は C 上の行列環でなければならない。したがって C 上のすべての中心的単純代数は C 上の行列環でなければならない。
有限体上のすべての有限次元中心的単純代数はその体上の行列環でなければならない。
すべての可換半単純環は体の有限個の直積でなければならない[注釈 3]。
アルティン・ウェダーバーンの定理によると体 k 上の半単純代数は有限積
\prod M_{{n_{i}}}(D_{i}) に同型である、ただし
n_{i} は自然数で
D_{i} は
k 上の有限次元可除代数で、
M_{{n_{i}}}(D_{i}) は
D_{i} 上の
n_{i}\times n_{i} 行列の代数である。再び、この積は因子の置換を除いて一意的である。
URLリンク(ja.wikipedia.org)(%E4%BB%A3%E6%95%B0%E5%AD%A6)
フロベニウスの定理(ふろべにうすのていり、英: the Frobenius theorem)とは、実数体上の有限次元の結合的多元体を特徴付ける定理であって、ドイツの数学者フェルディナント・ゲオルク・フロベニウスによって1877年に証明された。この定理は、可換でない実数上の結合的多元体は四元数体しかないことを証明している。
内容
D が実数体 R 上の有限次元多元体であれば、以下の何れかが成り立つ。
D = R
D = C(複素数体)
D = H(四元数体)
つづく
385:132人目の素数さん
23/03/13 21:11:19.15 UeELXD7y.net
>>356
つづき
(参考)英語版に詳しい証明がある、ただし文字化けなおさず。本文参照ください
URLリンク(en.wikipedia.org)(real_division_algebras)
Frobenius theorem (real division algebras)
In mathematics, more specifically in abstract algebra, the Frobenius theorem, proved by Ferdinand Georg Frobenius in 1877, characterizes the finite-dimensional associative division algebras over the real numbers. According to the theorem, every such algebra is isomorphic to one of the following:
R (the real numbers)
C (the complex numbers)
H (the quaternions).
These algebras have real dimension 1, 2, and 4, respectively. Of these three algebras, R and C are commutative, but H is not.
Proof
The main ingredients for the following proof are the Cayley?Hamilton theorem and the fundamental theorem of algebra.
Introducing some notation
Let D be the division algebra in question.
Let n be the dimension of D.
We identify the real multiples of 1 with R.
When we write a <= 0 for an element a of D, we tacitly assume that a is contained in R.
We can consider D as a finite-dimensional R-vector space. Any element d of D defines an endomorphism of D by left-multiplication, we identify d with that endomorphism. Therefore, we can speak about the trace of d, and its characteristic and minimal polynomials.
For any z in C define the following real quadratic polynomial:
Q(z;x)=x^{2}-2\operatorname {Re} (z)x+|z|^{2}=(x-z)(x-{\overline {z}})\in \mathbf {R} [x].
Note that if z ∈ C ? R then Q(z; x) is irreducible over R.
つづく
386:132人目の素数さん
23/03/13 21:11:52.56 UeELXD7y.net
>>357
つづき
The claim
The key to the argument is the following
Claim. The set V of all elements a of D such that a2 <= 0 is a vector subspace of D of dimension n - 1.
387:Moreover D = R 〇+ V as R-vector spaces, which implies that V generates D as an algebra. Proof of Claim: Let m be the dimension of D as an R-vector space, and pick a in D with characteristic polynomial p(x). By the fundamental theorem of algebra, we can write p(x)=(x-t_{1})\cdots (x-t_{r})(x-z_{1})(x-{\overline {z_{1}}})\cdots (x-z_{s})(x-{\overline {z_{s}}}),\qquad t_{i}\in \mathbf {R} ,\quad z_{j}\in \mathbf {C} \backslash \mathbf {R} . We can rewrite p(x) in terms of the polynomials Q(z; x): p(x)=(x-t_{1})\cdots (x-t_{r})Q(z_{1};x)\cdots Q(z_{s};x). Since zj ∈ C\R, the polynomials Q(zj; x) are all irreducible over R. By the Cayley?Hamilton theorem, p(a) = 0 and because D is a division algebra, it follows that either a ? ti = 0 for some i or that Q(zj; a) = 0 for some j. The first case implies that a is real. In the second case, it follows that Q(zj; x) is the minimal polynomial of a. Because p(x) has the same complex roots as the minimal polynomial and because it is real it follows that p(x)=Q(z_{j};x)^{k}=\left(x^{2}-2\operatorname {Re} (z_{j})x+|z_{j}|^{2}\right)^{k} Since p(x) is the characteristic polynomial of a the coefficient of x2k?1 in p(x) is tr(a) up to a sign. Therefore, we read from the above equation we have: tr(a) = 0 if and only if Re(zj) = 0, in other words tr(a) = 0 if and only if a2 = ?|zj|2 < 0. So V is the subset of all a with tr(a) = 0. In particular, it is a vector subspace. The rank?nullity theorem then implies that V has dimension n - 1 since it is the kernel of {\displaystyle \operatorname {tr} :D\to \mathbf {R} }. Since R and V are disjoint (i.e. they satisfy {\displaystyle \mathbf {R} \cap V=\{0\}}), and their dimensions sum to n, we have that D = R 〇+ V. つづく
388:132人目の素数さん
23/03/13 21:12:59.40 UeELXD7y.net
>>358
つづき
The finish
For a, b in V define B(a, b) = (?ab ? ba)/2. Because of the identity (a + b)2 ? a2 ? b2 = ab + ba, it follows that B(a, b) is real. Furthermore, since a2 <= 0, we have: B(a, a) > 0 for a ≠ 0. Thus B is a positive definite symmetric bilinear form, in other words, an inner product on V.
Let W be a subspace of V that generates D as an algebra and which is minimal with respect to this property. Let e1, ..., en be an orthonormal basis of W with respect to B. Then orthonormality implies that:
e_{i}^{2}=-1,\quad e_{i}e_{j}=-e_{j}e_{i}.
If n = 0, then D is isomorphic to R.
If n = 1, then D is generated by 1 and e1 subject to the relation e2
1 = ?1. Hence it is isomorphic to C.
If n = 2, it has been shown above that D is generated by 1, e1, e2 subject to the relations
e_{1}^{2}=e_{2}^{2}=-1,\quad e_{1}e_{2}=-e_{2}e_{1},\quad (e_{1}e_{2})(e_{1}e_{2})=-1.
These are precisely the relations for H.
つづく
389:132人目の素数さん
23/03/13 21:13:18.99 UeELXD7y.net
>>359
つづき
If n > 2, then D cannot be a division algebra. Assume that n > 2. Let u = e1e2en. It is easy to see that u2 = 1 (this only works if n > 2). If D were a division algebra, 0 = u2 ? 1 = (u ? 1)(u + 1) implies u = ±1, which in turn means: en = ?e1e2 and so e1, ..., en?1 generate D. This contradicts the minimality of W.
Remarks and related results
The fact that D is generated by e1, ..., en subject to the above relations means that D is the Clifford algebra of Rn. The last step shows that the only real Clifford algebras which are division algebras are Cl0, Cl1 and Cl2.
As a consequence, the only commutative division algebras are R and C. Also note that H is not a C-algebra. If it were, then the center of H has to contain C, but the center of H is R. Therefore, the only finite-dimensional division algebra over C is C
390: itself. This theorem is closely related to Hurwitz's theorem, which states that the only real normed division algebras are R, C, H, and the (non-associative) algebra O. Pontryagin variant. If D is a connected, locally compact division ring, then D = R, C, or H. (引用終り) 以上
391:132人目の素数さん
23/03/13 23:43:30.93 UeELXD7y.net
>>355 追加
多元数や多元体から、「フロベニウスの定理 (代数学)の項を参照」に到達することもできる
URLリンク(ja.wikipedia.org)
多元数
「超複素数」はこの項目へ転送されています。
数学における多元数(たげんすう、英: hyper-complex number; 超複素数)は、実数体上の単位的多元環の元を表す歴史的な用語である。多元数の研究は19世紀後半に現代的な群の表現論の基盤となった。
歴史
19世紀には、数学の文献において四元数 (quaternion), 双複素数 (tessarine), 余四元数(英語版) (coquaternion), 双四元数(英語版) (biquaternion) および八元数 (octonion) と呼ばれる数体系が実数や複素数に加えて確立された概念となっていた。多元数 (hypercomplex number) の概念はこれらすべてを包含するものであり、またこれらを説明し分類するための指針を示唆する呼称である。
カタログ化の試みは1872年にベンジャミン・パースが著書 Linear Associative Algebra(『結合線型環』)を初版した時に始まり、それは息子のチャールズ・サンダース・パースに引き継がれた[1]。最も著しい点は、かれらが分類に有効な多元数として冪零元および冪等元を同定したことである。ケーリー=ディクソン構成では、対合を用いて実数の体系から複素数、四元数、八元数が作り出される。フルヴィッツとフロベニウスはこのような超複素数性に限界があることを述べる定理を証明している(フルヴィッツの定理 (ノルム多元体)(英語版)およびフロベニウスの定理 (代数学)の項を参照)。最終的に、1958年にJ・フランク・アダムズが位相的な方法を用いて有限次元実多元体が四種類(実数体 ?, 複素数体 ?, 四元数体 ?, 八元数体 ??)に限り存在することを証明した[2]。
多元数の体系(超複素数系)の手綱をとったのは行列論であった。まず行列を用いて、実二次正方行列のような新たな多元数が供給される。すぐに、行列のパラダイムは、行列とその演算を用いて表現することでほかの多元数を説明するようになる。1907年にジョセフ・ウェダーバーン(英語版)は結合的な超複素数系は必ず行列環か行列環の直和として表現されなければならないことを示した。
つづく
392:132人目の素数さん
23/03/13 23:44:08.80 UeELXD7y.net
>>361
つづき
これ以降、ウェダーバーンのエディンバラ大学での修士論文タイトルにも見られるように、このような超複素数系を言い表す用語として結合多元環 (associative algebra) が用いられるようになっていった。それでもなお、八元数や双曲四元数(英語版)のような非結合的な体系の表す別種の超複素数系があることに注意すべきである。
ホーキンス[3] の説明によれば、超複素数系はリー群およびその表現論を学ぶための布石である。例えば、1929年にエミー・ネーターは "Hyperkomplexe Grosen und Darstellungstheorie"(『超複素数量および表現論』)を書き下ろした[4]。1973年に書かれた多元数に関する教科書 Гиперкомплексные числа (Кантор & Солодовников 1973) は各国
393:語で翻訳が出ている[5]。 カレン・パーシャル(英語版)は、テオドール・モリーン(英語版)[6]やエデュアルト・シュテューディ(英語版)[7]らの著名な役割を含む、多元数の黄金時代の詳細な説明を書いている[8]。現代代数学への移り変わりについて、バーテル・リーンデルト・ヴァンデルヴェルデン(英語版)は自身の著書 History of Algebra(『代数学の歴史』)において多元数について30頁の紙幅を割いている[9]。 ケーリー=ディクソン代数 詳細は「ケーリー=ディクソンの構成法」を参照 実数体、複素数体、四元数体を除くすべてのクリフォード代数 Clp,q(R) は、平方が +1 となる非実元を持ち、従って多元体とならない。複素数を拡張する別のアプローチとしてケーリー=ディクソン構成をとることが挙げられる。これにより作り出される数体系は、n = 2, 3, 4, … に対して 2n次元で、その基底 {1, i1, …, i2n?1} の非実基底元 im はすべて互いに反交換し、かつ im2 = ?1 を満足する(虚数単位)。こうして得られる多元環は、八次元以上 (n ? 3) で非結合的となり、十六次元以上 (n ? 4) で零因子を含む。 この系列の初めの方は、四次元の四元数、八次元の八元数、十六次元の十六元数で、次元が上がるごとに代数的対称性がそれぞれ失われていく。実際、四元数の乗法は可換でなくなり、八元数の乗法は結合的でなくなり、十六元数のノルムは乗法的でなくなる。 つづく
394:132人目の素数さん
23/03/13 23:44:43.08 UeELXD7y.net
>>362
つづき
URLリンク(ja.wikipedia.org)
多元体
体上の斜体、多元体(たげんたい)または可除多元環(かじょたげんかん、英: division algebra)は、大まかには、体上の多元環で除法が自由にできるものをいう。
定義
厳密には、まず体上の多元環 D で、D は零元のみからなるものではないものとする。D が多元体または可除であるとは、D の任意の元 a と D の零元ではない任意の元 b に対して、a = bx なる D の元 x がただ一つ定まり、かつ a = yb なる D の元 y がただ一つ定まることをいう。
結合多元環に対しては、この定義は次のように簡単になる。体上の結合的な多元環が多元体であるための必要十分条件は、それが零元 0 と異なる単位元 1 を持ち、かつ各元 a が乗法逆元(すなわち ax = xa = 1 なる元)を持つことである。このとき多元体は体(field)になっている。
つづく
395:132人目の素数さん
23/03/13 23:45:49.28 UeELXD7y.net
>>363
つづき
結合的多元体
最もよく知られる結合的な多元体の例は有限次元実多元体(つまり、実数体 R 上の多元環で、R 上のベクトル空間として次元が有限なもの)である。フロベニウスの定理によれば、そのような多元体は同型の違いを除いて三種類、実数体(一次元)・複素数体(二次元)、四元数体(四次元)しかない。
ウェダーバーンの小定理によれば D が位数有限なる多元体ならば、D は実は有限体である。
(例えば複素数体 C のような)代数閉体 K 上には、K それ自身を除けば有限次元の結合多元体は存在しない。
結合的多元体は零因子を持たない。逆に(任意の体上の)有限次元の単位的結合多元環が多元環となる必要十分条件は、それが零因子を持たないことである。
A が体 F 上の単位的結合多元環で、S が A 上の単純加群ならば、S の自己準同型環は F 上の多元体であり、F 上の任意の結合多元体はこの方法で得られる。
体 K 上の結合多元体 D の中心 C(D)は、K を含む体となる。D をその中心 C(D) 上の多元体と見たときの次元は、それが有限であるならば必ず平方数 n2 であり、次数 (degree) と呼ばれる n は D の極大可換部分体の中心 C(D) 上の次元と一致する。体 F を一つ固定するとき、F 上有限次元の、(自明でない両側イデアルを持たないという意味で)単純な、結合多元環で中心が F となるようなものの同値類は、体 F のブラウアー群と呼ばれる群を成す。
任意の体上で有限次元の結合多元体を構成するひとつの方法として、一般四元数環を用いる方法が挙げられる(四元数の項も参照)。
有限次元の結合多元体に対して、それらの作る空間が何らかの意味のある位相を備えている場合が特に重要である。例えばノルム付き多元体やバナッハ代数が挙げられる。
つづく
396:132人目の素数さん
23/03/13 23:46:54.11 UeELXD7y.net
>>364
つづき
非結合的多元体
多元体において結合律の成立を課さずに、普通はより弱い結合性の条件(交代律や冪結合律など)を課したものを考えることもある。体上の多元環も参照。
実数体上で有限次元の可換単位的多元体は同型を除いてちょうど二つだけ存在する(それは実数体と複素数体で、いずれも結合的である)。
実数体上二次元の可換で非結合的な多元体が得られるが、これは単位元を持たない。このほかにも可換非結合的な有限次元実多元体は無数に存在するが、しかしそれらは全て実二次元である。
実は、任意の有限次元可換実多元体の次元は 1 か 2 のいずれかであることが1940年に証明されており、ハインツ・ホップに因んでホップの定理と呼ばれる。証明には位相幾何学的な方法が用いられた。後に代数幾何学を用いた別証明が発見されているけれども、直接的な代数的証明というものは知られていない。代数学の基本定理をホップの定理の系として得ることもできる。
可換性の仮定を落とすことで、ホップは自身の結果を拡張し「任意の有限次元実多元体の次元は2の冪でなければならない」ということを示した。
さらに後に示された事実として、任意の有限次元実多元体の次元は 1, 2, 4, 8 のいずれかでなければならないことが分かっている。
この事実は、ミシェル・ケルヴェアとジョン・ミルナーによってそれぞれ独立に1958年に証明された。これは代数的位相幾何学、特に K-理論を用いるものである。
qq~ が平方数の和に等しいという等式が成立する次元が 1, 2, 4, 8 に限られることは、アドルフ・フルヴィッツによって、1898年には既に示されていた[1](ノルム多元環に関するフルヴィッツの定理も参照せよ)。
つづく
397:132人目の素数さん
23/03/13 23:47:20.59 UeELXD7y.net
>>365
つづき
次元が 2, 4, 8 であるような実多元体で互いに同型でないようなものは無数に存在するが、以下のようにいうことができる。実数体上有限次元の多元体は
・それが「単位的かつ可換」(もしくは「結合的かつ可換」)ならば実数体 R または複素数体 C に同型、
・それが「非可換かつ結合的」ならば四元数体 H に同型、
・それが「非結合的だが交代的」ならば八元数体 O に同型
のいずれかでなければならない。以下、体 K 上の有限次元多元体の次元について知られていることを挙げる。
・K が代数閉体ならば必ず dim A= 1 である。
・K が実閉体ならば dim A= 1, 2, 4, 8 のいずれかに限られる。
・K が代数閉体でも実閉体でもないならば、K 上の多元体が存在する次元は無数に存在する
(引用終り)
以上
398:132人目の素数さん
23/03/13 23:58:18.96 UeELXD7y.net
>>366
さてさて
「肝心だと思う事を2048バイト以内で書くことが重要」>>338
とかほざいていたやつがいたなwww
>>330より
Q1.実数体R上の有限次元線型空間である可換体はRと複素数体Cのみであることを示せ
Q2.実数体R上の有限次元線型空間である斜体はR,Cと四元数体Hのみであることを示せ
だったかな?www
やってみなよ
2048バイト以内
上記のコピー以上に価値あることが書けるんだよねwww
植田蛮の定理>>350 について語れよwwwww
399:132人目の素数さん
23/03/14 07:40:02.26 bQV51cAg.net
>>367
1、検索結果を読んでも全く理解できず全コピペ
さすが大学1年の4月で落ちこぼれた真正●●
Q, >>357-360を読んで肝心な部分をまとめて
2048バイト以内(すなわち1コメント)で書け
1には絶対できないと予言する
勝った!(完全勝利宣言!!!)
400:132人目の素数さん
23/03/14 07:43:22.45 bQV51cAg.net
正則行列も理解できん馬鹿に
ウェッダーバーンの定理の証明なんて
読めるわけないわなあ
残念!!!
401:132人目の素数さん
23/03/14 07:53:28.36 5bTCTU61.net
>>367
> Q2.実数体R上の有限次元線型空間である斜体はR,Cと四元数体Hのみであることを示せ
用語 斜体 の使い方が古いな
下記の通り
(桂か?(下記))
URLリンク(www.math.kyoto-u.ac.jp)
雪江明彦
代数の教科書について
URLリンク(www.math.kyoto-u.ac.jp)
教科書の 用語について (2012/7/7更新)
2. 「可除環」か「斜体」か
3 巻で「必ずしも可換でない体」の呼び方が必要になったので,1,
2 巻を増刷したときにここで用語を変えなかったらもう変えられないと思って初版第
1 刷を買われた方には申し訳ないと思ったが用語を変えることにした. さて「必ずし
も可換でない体」のことを何と呼ぼう? 桂では「斜体」と呼んでいるが,この用語を
使う気にはなれなかった. それは英語にしたとき,「ヴェーダーバーンの定理」の状況
では division ring, division algebra が完全に定着しているから. 「斜体」を英語にし
たら「skew field」だろうが,ヴェーダーバーンの定理とかブラウアー群などについて
語るとき skew field という用語を使うことはないだろう. これが英語で division ring
なら「可除環」がよいだろうと思った. 永田の可換体論では体,可換体という用語だ
が,今となっては「体」とは日本語ではほとんどの場合可換体を意味するようになっ
ていると思うので,可換な体を最初から体と呼び,必ずしも可換でない体を可除環と
呼ぶことにした. いずれにせよ,1,2 巻ではほとんど「体」しか出てこないので,問
題になるのは 3 巻の補足に入ってから. そのときは「可除環」とした理由がわかって
もらえるのではないだろうか.
(引用終り)
確かに確認すると、雪江 代数学2 2019年 第1版9刷の
P3では
加除環:加減乗除ができる集合
体 :可換な加除環
斜体:非可換な加除環
となっている
いまは、これが日本でも、そして海外でも普通では
つまり、”斜体:非可換な加除環”です!
402:132人目の素数さん
23/03/14 07:58:54.56 5bTCTU61.net
>>369
>ウェッダーバーンの定理の証明なんて
手元に
雪江 代数学3があるよ
P350 定理7.5.15 (ヴェーダーバーンの定理)
とある
証明は、2ページ弱
なんということもない
ネット検索でも、どこかには見つかるだろうさ
(英文かもしらんがね)
まあ、アホには読めないさwww
403:132人目の素数さん
23/03/14 08:02:39.11 5bTCTU61.net
>>361-362 補足
>すぐに、行列のパラダイムは、行列とその演算を用いて表現することでほかの多元数を説明するようになる。1907年にジョセフ・ウェダーバーン(英語版)は結合的な超複素数系は必ず行列環か行列環の直和として表現されなければならないことを示した。
>これ以降、ウェダーバーンのエディンバラ大学での修士論文タイトルにも見られるように、このような超複素数系を言い表す用語として結合多元環 (associative algebra) が用いられるようになっていった。それでもなお、八元数や双曲四元数(英語版)のような非結合的な体系の表す別種の超複素数系があることに注意すべきである。
ウェダーバーンの修士論文だったみたい
ウェダーバーンの定理って
404:132人目の素数さん
23/03/14 08:46:39.63 nn+dmyNb.net
多元数理には多元数の大家がいたのだが
405:132人目の素数さん
23/03/14 10:55:45.11 F5Wi2qJr.net
多元数理の名は
中山正に敬意を表したのだろう
406:132人目の素数さん
23/03/14 11:19:04.30 O8Fgompo.net
>>373
>多元数理には多元数の大家がいたのだが
ありがとう
多元数理は、下記の名古屋大かな? 多元数の大家か・・、すぐ浮かばないのが残念です
URLリンク(www.math.nagoya-u.ac.jp)
名古屋大学 大学院多元数理科学研究科・理学部数理学科
在学生の方へ
多元数理科学研究科の学習については大学院多元数理科学研究科での学び方,学位など大学院後期課程のことについては大学院後期課程についてを参照ください.
(引用終り)
ところで、話が違うけど、プロのご意見を聞いてみたいのが、下記の話題のIUTです
スレ違いですが、ご容赦
(IUTの成否は別におくとして、下記の一般論としてで結構です)
1)RIMSの査読と出版は適正だったか?
私の意見は、神の目からはともかく、人としてベストを尽くしたと思っています
(いい加減な瑕疵ある論文を通しても、本人のためにならなし、だれのためにもならない)
2)ショルツェ氏の批判の下記手法の”radical simplifications”は、普通数学では使用されないのでは?
(数学以外の特に文系の議論では常用手法ですが)
つまり、極論すると数学の定義を書き換えてしまうわけで、定義を書き換えたら数学として基本は別ものでしょ
私らは、外野の応援席から眺めていますが、プロのご意見を伺ってみたかったので
簡単で結構ですので、ご意見を書いて頂ければ幸甚です
(参考)
URLリンク(www.kurims.kyoto-u.ac.jp)
Why abc is still a conjecture
PETER SCHOLZE AND JAKOB STIX Date: August 23, 2018.
P4
2.1.節
To facilitate the discussion, we will describe
(only) the notions that are strictly relevant to explain what we regard as the error. This will
involve certain radical simplifications, and it might be argued that such simplifications strip
away all the interesting mathematics that forms the core of Mochizuki’s proof.
407:132人目の素数さん
23/03/14 11:37:12.80 O8Fgompo.net
>>374
ありがとう
中山 正先生か
URLリンク(ja.wikipedia.org)
中山 正(なかやま ただし、1912年7月26日 - 1964年6月5日[1])は、日本の数学者(環論・表現論)。
略歴
東京生まれ[1]。1935年、東京帝国大学を卒業[1]。1937年から2年間、プリンストン高等数学研究所に滞在。1941年、大阪帝国大学より博士号を取得[2]。1944年、名古屋大学教授。1954年に日本学士院賞を受賞[3] [4] [5]。代数学における中山の補題で有名。1964年に結核のため死去。
主な著作
学位論文
博士号(理学) 中山正 『On frobeniusean algebras』大阪帝国大学、1941年。 NAID 500000315242。 [報告番号不明]
書籍
『局所類体論』、岩波書店〈岩波講座数学9 別項〉、1935年。NCID BN14766638。
『束の代数的理論』、岩波書店〈現代数学叢書 束論; I〉、1944年。NCID BN1058006X。
『代数系と微分 : 代数学よりの二三の話題』、河出書房〈数学集書4〉、1948年。NCID BN04295422。
『集合・位相・代数系』改版、至文堂、1965年。NCID BN13519043。
共著
東屋五郎『環論』、岩波書店〈現代数学5 代数学 2〉、1954年。 NCID BN02068361。
松島与三、秋月康夫、永田雅宜『リー環論 . 近代代数学 . ホモロジー代数学』、服部昭(編)、共立出版〈現代数学講座[6]〉、1956年。 NCID BN04204212。復刊、2010年。
408:132人目の素数さん
23/03/14 12:39:58.44 PzzRlrSe.net
おサルの無様な詰み、確と見届けたw
409:132人目の素数さん
23/03/14 12:40:45.52 PzzRlrSe.net
by おっちゃん
410:132人目の素数さん
23/03/14 13:38:14.42 O8Fgompo.net
>>377-378
>おサルの無様な詰み、確と見届けたw
>by おっちゃん
おっちゃん、ありがとう
スレ主です
・おサルさん >>スレリンク(math板:5番)
彼は、結局数学科で落ちこぼれて35年
数学科以外で自分より上がいると、落ちこぼれた自分がみじめで許せないんだ
だから、結局ヤク�