スレタイ 箱入り無数目を語る部屋7at MATH
スレタイ 箱入り無数目を語る部屋7 - 暇つぶし2ch818:132人目の素数さん
23/06/25 09:09:26.47 5uYeUZDj.net
>>764
おサルさんか スレリンク(math板:5番)
スレ主です

いろんな点で間違っているw

> つぎに、箱の中身の集合はRだろうがもっと大きな集合Sだろうが随意だが
> 意味があるのは、箱の中身と代表元の対応する項が、等しいか否か
> 等しい場合を0とし、そうでない場合を1とすると、中身はたった2つに圧縮できる
> そして、問題は、変換された中身が0の箱を当てるもの、と解釈できる
> だから、中身を当てるのではなく、中身がカンニングできる箱を当てるのである

箱の数mの有限長数列を考える
しっぽの同値類は、最後のm番目の箱さえ一致していれば可
問題の列の最後m番目を開ける 箱の中の数r∈Rだったとする
同値類が決まる

では、m-1番目の箱は?
代表のm-1番目と問題のm-1番目とが一致する確率はp(ある確率pの事象を使ったとしてね。サイコロならp=1/6)
代表を使っても得られる情報は、しっぽの最後の箱の一致のみ
これ定義通り
時枝記事>>1は、m→∞として最後の箱を見えなくして錯覚させているだけのこと

> すでに代表元という膨大な情報量の「回答」が示されている

錯覚している
代表元では、もとの類別の情報の多くが欠落していることを忘れている
例えば、日本人の集合に対して岸田総理が代表だとする
そもそも、1億人以上の集合に一人の代表で全ての情報が集約できるはずない
岸田総理は、男だし女性の情報を持たない
子供や若者の情報を持たない
代表元:膨大な情報量の「回答」でなく→膨大な情報量が欠落した「回答」


> 代表元がとれる、とみとめたその瞬間
> 「無限個の、0が入った箱のうち、有限個について、中身を1に置き換える」
> という設定に変換できる

だから、代表元では多くの情報が欠落しているよ
日本人の集合 vs 岸田総理(代表)
のごとし
しっぽの同値類では、有限の場合 情報は最後のただ一つの箱の一致まで圧縮されている
無限列の場合は、有限列の場合ほど明確ではないが、そこがトリックの手品のタネ

お薬をしっかり飲みましょう!


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch