23/06/11 10:02:47.22 5t3/bu9Q.net
>>609
場合の数の補足
1)「箱入り無数目」>>1&>>30
実数の集合 R⊃N 自然数の集合 です
いま、箱一つで、箱に任意の自然数n∈N を入れる数当てを考える
この場合、まさに>>302の自然数Nの一様分布類似の非正則分布が当てはまる
(当りの自然数nを選ぶ確率は0! 但し、自然数の集合Nは非正則分布>>302)
だから、時枝さんは箱に実数の集合Rとした時点で、非正則分布を使ってしまっているのですね
箱n個なら、順序数 ωで記号の濫用で書くとω^n ですね
非正則分布です
もちろん、n→∞でも非正則分布です
2)実数の集合 R⊃[0,1]区間の実数で、1点的中だと、Null setです
最小の非可算順序数で ω1ですね
箱n個なら、同様に(ω1)^n ですね
非正則分布です
もちろん、n→∞でも非正則分布です!
(参考)
URLリンク(ja.wikipedia.org)
極限順序数
有限でない最小の極限順序数 ω
ω は自然数全体の成す集合の順序型を表している
可算順序数を超えて、最小の非可算順序数 ω1
URLリンク(en.wikipedia.org)
Lebesgue_measure
Null sets
Main article: Null set
A subset of Rn is a null set if, for every ε > 0, it can be covered with countably many products of n intervals whose total volume is at most ε. All countable sets are null sets.