23/06/10 09:13:09.22 9OKzQGab.net
>>581
さて、命題を追加します
命題4:
i)有限だが十分長い長さn個の箱の数列で、一つの箱の一致確率をpとする(0<= p <=1(IIDを仮定する))
2列XとYで考える
列Xの箱を全て開けて、決定番号dXを得る
列Yの箱でdX+1番目までのしっぽを開け、決定番号dYを得る
ほぼ確率1で、dX<dY であり、代表とのしっぽの一致はdY番目で終わっている
この場合、列YのdX番目の箱の数の的中確率は、通常の確率論通りpである
ii)上記i)でn→∞の数列では、確率1で、dX<dY であり、代表とのしっぽの一致はdY番目で終わっている
この場合、列YのdX番目の箱の数の的中確率は、通常の確率論通りpである
証明
i)Lemmma 1,2(>>489)より従う
ii)命題4i)より自明
QED
「通常の確率論通りp」!
結局、これが結論ですねw
<補足>
・確率論が分かっていない人が、居ます
・簡単な例で説明します
サイコロを振って、ある数a以上が出れば勝ち、a未満なら負け
a=4なら、{4,5,6}で勝ち、{1,2,3}で負け、勝率5割
a=5なら、{5,6}で勝ち、{1,2,3,4}で負け、勝率3割3分
・さて、サイコロは振ったが、ツボの中とします。これは、確率変数として扱います
ツボを振ったので、目は確定しているが、ツボを開けていないので未知だからです
ツボを開けて、確定すると、単なる数です
・”確率変数”が理解できずに、「定数だ