23/06/09 12:17:48.75 05Hzdd8B.net
スレ主です
>>481 より再録 (なお、簡単に一つの箱の数が一致する確率はpとする)
<時枝記事の数列のしっぽの決定番号について>
(決定番号の詳細は、>>30ご参照)
・まず、有限長さn個の箱の数列を考える。箱には先頭を1番として、最終n番とする番号を付する
・長さ有限の列ならば、決定番号も有限であり、全事象Ωの確率は1である
(なお、有限長さn個の箱の数列で しっぽの同値類は、最後n番目の箱の数が一致していることを、注意しておく)
Lemmma 2:有限長さn個の箱の数列で、決定番号n-m以下(1<= m <n)となる確率はp^mで、決定番号がn-m超えとなる確率は1-p^m
証明:上記同様、決定番号n-m以下となるには、まずはn番目からn-m番目までのmの箱の数が一致していなければならない
そして、n番目からn-m番目までのmの箱の数が一致していれば、決定番号n-m以下となる
その確率はp^mで、全事象Ωの確率1より、決定番号がn-m超えとなる確率は1-p^m