23/06/03 14:09:52.48 TgoWEv/Q.net
>>489
つづき
命題1:有限長さn個の箱の数列では、時枝記事の数列のしっぽの決定番号を使った数当て手法は、不成立
証明:Lemmma 1より、決定番号n-1以下となる確率はpで、決定番号nとなる確率は1-pである
いま、区間[0,1]の一様分布の実数を箱に入れるとすると、的中確率p=0である
つまり、決定番号n-1以下となる確率は0で、決定番号nとなる確率は1であるから
決定番号 d1,d2 <=n-1 の大小比較は確率0の話
命題2:無限長さn→∞の箱の数列で、時枝記事は有限の最後の箱を無限の彼方に飛ばしてゴマカシている
証明:有限長さn個の箱の数列については、命題1の通り
では、n→∞の箱の数列でどうか? 確かに、最後の箱を無限の彼方に飛ばしてゴマカシているが
この場合でも、決定番号 d1,d2 が有限の値になる確率0は、変わらないのです
決定番号 d1,d2 <=n-1 の大小比較は確率0の話 であることも、変わらないので結局はゴマカシです
追伸
命題2の場合に、決定番号は無限大に発散して、非正則分布をなし>>302
全事象Ωが発散していて確率の和に1を与えることができずコルモゴロフの確率の公理に反していること
は、すでに>>477に記した通りです
(参考)
URLリンク(student.sguc.ac.jp)
山陽学園大学・山陽学園短期大学
統計学
URLリンク(student.sguc.ac.jp)
4. 確率の復習
(Ω「全事象」などの説明がある)
(引用終り)
以上