スレタイ 箱入り無数目を語る部屋7at MATH
スレタイ 箱入り無数目を語る部屋7 - 暇つぶし2ch2:132人目の素数さん
23/01/26 23:46:10.73 B2d4Zomn.net
つづき

mathoverflowは時枝類似で
・Denis質問でも、もともと”but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”
 となっています。Denisの経歴を見ると、彼は欧州の研究所勤務で、other peopleは研究所の確率に詳しい人でしょう
・Pruss氏とHuynh氏とは、経歴を見ると、数学DRです。両者とも、このパズル(=riddle)は、可測性が保証されていないと回答しています

URLリンク(www.ma.huji.ac.il)
Sergiu Hart
URLリンク(www.ma.huji.ac.il)
Some nice puzzles:
URLリンク(www.ma.huji.ac.il)
Choice Games November 4, 2013
P2
Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing
the xi independently and uniformly on [0, 1] and {0, 1,..., 9}, respectively.

Sergiu Hart氏は、ちゃんと”シャレ”が分かっている(関西人かもw)
Some nice puzzles Choice Games と、”おちゃらけ”であることを示している
かつ、”P2 Remark.”で当てられないと暗示している
また、”A similar result, but now without using the Axiom of Choice.GAME2”
で、選択公理なしで同じことが成り立つから、”選択公理”は、単なる目くらましってことも暗示している

つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch