純粋・応用数学・数学隣接分野(含むガロア理論)13at MATH
純粋・応用数学・数学隣接分野(含むガロア理論)13 - 暇つぶし2ch864:132人目の素数さん
23/07/28 15:53:46.37 GoaFG8py.net
>>792
>逆像なんて関係無いよ?

横レスすまん
逆像を問題にしているのは、下記の”関数の可測性”を問題にしているってことだろう
下記 可測関数 「その原像が可測であることを言う」だな
関数の可測性から、「確率測度が決められるかどうか」というスジじゃないかな
(しらんけど(私も詳しくないので、外しているかもだが))

(参考)
URLリンク(ja.wikipedia.org)
可測関数
測度論の分野における可測関数(かそくかんすう、英: measurable function)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。
この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には
f: (R,L)→ (R,B) が可測関数であることを意味する。すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している(ここで
L はルベーグ可測集合全体の成す σ-代数であり、
B は R 上のボレル集合族である)。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch